Opposite Effects of M1 and M2 Macrophages on Hematopoietic Stem Cell Self-Renewal and Ex Vivo Expansion

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2909-2909
Author(s):  
Yi Luo ◽  
Lijian Shao ◽  
Jianhui Chang ◽  
Wei Feng ◽  
Chengcheng Li ◽  
...  

Abstract Macrophages (MΦ) are professional phagocytes in the innate immune system. They are not only involved in regulation of various immune functions and inflammation, but also exhibit plasticity in modulation of tissue regeneration and repair after being polarized into M1 and M2 MΦ by different inflammatory cytokines. In addition, several recent studies show that MΦ are a new constituent of the hematopoietic stem cells (HSCs) niche and play a role in regulation of HSCs maintenance and mobilization in bone marrow (BM). However, it is not known whether MΦ can regulate HSCs self-renewal and whether the effects of MΦ on HSCs can be influenced by differential MΦ polarization. This was investigated using an ex vivo HSCs expansion model consisting of mouse bone marrow LSK (Lin-sca-1+c-Kit+) cells cultured with or without MΦ in a mouse HSCs expansion medium (StemSpanTM serum-free medium supplemented with 20ng/ml of stem cell factor [SCF] and thrombopoietin [TPO]). We found that LSK cells were expanded about 20-, 15-, and 30-fold after 6 days of co-culture with MΦ harvested from mouse BM, spleen, and peritoneal cavity, respectively, whereas there was no significant expansion after culture without MΦ or with BM Gr-1high or Gr-1low monocytes. In addition, we found that M1-MΦ polarized by INFγ were more effective than IL4-polarized M2-MΦ in promoting LSK cells expansion ex vivo (45-fold vs. 15-fold). However, the promotion of LSK cells expansion by M1-MΦ resulted in about 88% reduction in HSCs as judged by 5-week cobblestone area forming cell (CAFC) assay. In contrast, M2-MΦ significantly promoted HSCs expansion. A greater expansion of HSCs was achieved after LSK cells were co-cultured with M2-MΦ for 9 days than for 6 days (20-fold vs. 6-fold). These findings suggest that M1-MΦ are more effective than M2-MΦ in promoting LSK cells or hematopoietic progenitor cells (HPCs) expansion, at the expense of HSCs self-renewal, whereas M2-MΦ can promote HPCs expansion as well as HSCs self-renewal. This suggestion is supported by results of serial transplantation and competitive repopulation unit (CRU) assays. CRU assay showed that LT-HSCs (e.g. 4-month CRU) were increased about 13 folds relative to the starting numbers of CRU in the input after LSK cells were co-cultured with M2-MΦ for 9 days, but were barely detectable after the cells were cultured without MΦ or with M1-MΦ. The inhibitory effect of M1-MΦ on HSCs self-renewal and expansion was attenuated by inhibition of inducible nitric oxide synthase (iNOS) activity with an inhibitor or knockout iNOS. Inhibition of arginase and/or cyclooxygenase activities with an inhibitor attenuated the promotion of HSCs self-renewal and expansion by M2-MΦ. More importantly, we found that human CD34+ cells, 8-week CAFC, and SCID mice repopulating cells (SRCs) were increased 42±14, 8±2.1, and 4 folds over the input values, respectively, after human cord blood CD34+ cells were co-cultured with M2-MΦ generated from human cord blood CD34- cells for 7 days in a human HSCs expansion medium (StemSpanTM serum-free medium supplemented with 50 ng/ml of SCF, TPO, and FLT-3 ligand). These findings demonstrate that M1-MΦ and M2-MΦ have opposite effects on HSCs self-renewal, which may be important for regulation of hematopoiesis under various pathological conditions in which MΦ are differentially polarized to M1 or M2 by diverse inflammatory cytokines. In addition, M2-MΦ may be used to promote human cord blood HSCs ex vivo expansion to make human cord blood transplantation available to more patients. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1329-1329
Author(s):  
Aleksandra Rizo ◽  
Edo Vellenga ◽  
Gerald de Haan ◽  
Jan Jacob Schuringa

Abstract Hematopoietic stem cells (HSCs) are able to self-renew and differentiate into cells of all hematopoietic lineages. Because of this unique property, they are used for HSC transplantations and could serve as a potential source of cells for future gene therapy. However, the difficulty to expand or even maintain HSCs ex vivo has been a major limitation for their clinical applications. Here, we report that overexpression of the Polycomb group gene Bmi-1 in human cord blood-derived HSCs can potentially overcome this limitation as stem/progenitor cells could be maintained in liquid culture conditions for over 16 weeks. In mouse studies, it has been reported that increased expression of Bmi-1 promotes HSC self-renewal, while loss-of-function analysis revealed that Bmi-1 is implicated in maintenance of the hematopoietic stem cells (HSC). In a clinically more relevant model, using human cord blood CD34+ cells, we have established a long-term ex-vivo expansion method by stable overexpression of the Bmi-1 gene. Bmi-1-transduced cells proliferated in liquid cultures supplemented with 20% serum, SCF, TPO, Flt3 ligand, IL3 and IL6 for more than 4 months, with a cumulative cell expansion of more then 2×105-fold. The cells remained cytokine-dependent, while about 4% continued to express CD34 for over 20 weeks of culture. The cultured cells retained their progenitor activity throughout the long-term expansion protocol. The colony-forming units (CFUs) were present at a frequency of ~ 30 colonies per 10 000 cells 16 weeks after culture and consisted of CFU-GM, BFU-E and high numbers of CFU-GEMM type progenitors. After plating the transduced cells in co-cultures with the stromal cell line MS5, Bmi-1 cells showed a proliferative advantage as compared to control cells, with a cumulative cell expansion of 44,9 fold. The non-adherent cells from the co-cultures gave rise to higher numbers of colonies of all types (~70 colonies/10.000 cells) after 4 weeks of co-culture. The LTC-IC frequencies were 5-fold higher in the Bmi-1-transduced cells compared to control cells (1/361 v.s. 1/2077, respectively). Further studies will be focused on in-vivo transplantation of the long-term cultured cells in NOD/SCID mice to test their repopulating capacity. In conclusion, our data implicate Bmi-1 as an important modulator of human HSC self-renewal and suggest that it can be a potential target for therapeutic manipulation of human HSCs.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2308-2308
Author(s):  
Junke Zheng ◽  
Chengcheng Zhang

Abstract We previously showed that angiopoietin-like protein 5 (Angptl5) and IGF Binding Protein 2 (IGFBP2) support dramatic ex vivo expansion of human hematopoietic stem cells (HSCs). To understand the mechanisms of their action, here we studied the effects of Angptl5 and IGFBP2 on the surface phenotype, signaling activation, self-renewal, apoptosis, differentiation, and homing of human cord blood CD34+ cells. Using immunofluorescence staining, we showed that Angptl5 and IGFBP2 activate certain signaling pathways such as MAPK and Stat5 in human cord blood CD34+ cells. IGFBP2 and Angptl5 increased the expression of transcription factors HoxB4, Bmi-1, EZH2, and survivin, measured by intracellular staining flow cytometry analysis and real-time RT-PCR. IGFBP2 and Angptl5 also inhibit expression of certain transcription factors important for differentiation of myeloid, erythroid, and lymphoid lineages. To test whether IGFBP2 and Angptl5 affect the homing of HSCs, we cultured human cord blood CD34+ cells in serum-free medium supplemented with SCF, TPO, Flt3-L, IGFBP2 or Angptl5, and transplanted them into sublethally irradiated NOD/SCID mice intraveneously or intrafemorally. Both IGFBP2 and Angptl5 support ex vivo expansion of SRCs in intrafemorally injected mice, suggesting the expansion-stimulating effects elicited by both factors are not caused by modulation of HSC homing. Interestingly, when we used intrafemoral injection, we found that Angptl5 treated HSCs have enhanced engraftment in non-injected bone marrow. This suggests Angptl5 treated HSCs further facilitate the mobilization of HSCs in vivo. We conclude that IGFBP2 and Angptl5 support self-renewal and inhibit differentiation of human cord blood HSCs. Our data also suggest that a combination of expression of transcription factors important for self-renewal, survival, and differentiation of HSCs can be used as a “stemness index” that predicts the activity of cultured human HSCs.


Blood ◽  
2009 ◽  
Vol 114 (24) ◽  
pp. 5044-5051 ◽  
Author(s):  
Isabelle I. Salles ◽  
Tim Thijs ◽  
Christine Brunaud ◽  
Simon F. De Meyer ◽  
Johan Thys ◽  
...  

Abstract Xenotransplantation systems have been used with increasing success to better understand human hematopoiesis and thrombopoiesis. In this study, we demonstrate that production of human platelets in nonobese diabetic/severe combined immunodeficient mice after transplantation of unexpanded cord-blood CD34+ cells was detected within 10 days after transplantation, with the number of circulating human platelets peaking at 2 weeks (up to 87 × 103/μL). This rapid human platelet production was followed by a second wave of platelet formation 5 weeks after transplantation, with a population of 5% still detected after 8 weeks, attesting for long-term engraftment. Platelets issued from human hematopoietic stem cell progenitors are functional, as assessed by increased CD62P expression and PAC1 binding in response to collagen-related peptide and thrombin receptor-activating peptide activation and their ability to incorporate into thrombi formed on a collagen-coated surface in an ex vivo flow model of thrombosis. This interaction was abrogated by addition of inhibitory monoclonal antibodies against human glycoprotein Ibα (GPIbα) and GPIIb/IIIa. Thus, our mouse model with production of human platelets may be further explored to study the function of genetically modified platelets, but also to investigate the effect of stimulators or inhibitors of human thrombopoiesis in vivo.


2021 ◽  
Author(s):  
Yiqi Yang ◽  
Bihui Zhang ◽  
Junye Xie ◽  
Yuling Cai ◽  
Jia Liu ◽  
...  

Abstract Background: Umbilical cord blood (UCB) has been clinically used for human hematopoietic stem cells (HSCs) transplantation. However, limited numbers of the functional UCB-HSCs from single cord blood restricts its application in adults, while most of the strategies for stem cells expansion in vitro are either inefficient or costly. To overcome these obstacles, we evaluated the potential role of our newly identified CH02 peptide in ex vivo culture expansion of CD34+ UCB-HSCs. Methods: Enriched human CD34+ progenitor/stem cells populations were cultured in serum-free medium supplemented with different cytokines combinations for 8 days. These cytokines combinations included various concentration of CH02 peptide or the FLT3 ligand, with a cocktail of several growth factors such as IL-6, SCF and TPO. In addition, the global gene expression profile of the CD34+ cells cultured under different conditions were monitored through RNA-seq experiments. Furthermore, the expanded CD34+ cells were topically transplanted into the dorsal wounds of diabetic mice, and the wound closure was observed to evaluate the pro-repair ability of CH02-cultured CD34+ cells.Results: We herein report that the combination of CH02 peptide and other cytokines under the serum-free medium can effectively expand the CD34+ HSCs into 12-fold within 7 days while maintaining their stem cell properties. Moreover, CH02 peptide increased the anti-inflammatory and growth-promoting capacity of CD34+ cells, and thus accelerating wound healing of diabetic mice via promoting the anti-inflammatory and inhibiting the inflammatory factors.Conclusions: Together, our CH02 peptide demonstrated promising potentials to improve HSCs expansion for clinical application.


2001 ◽  
Vol 16 (1) ◽  
pp. 20 ◽  
Author(s):  
Ju Young Seoh ◽  
Hae Young Park ◽  
Wha Soon Chung ◽  
Seung Cheol Kim ◽  
Myong Joon Hahn ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4208-4208
Author(s):  
Hiroto Araki ◽  
Nadim Mahmud ◽  
Mohammed Milhem ◽  
Mingjiang Xu ◽  
Ronald Hoffman

Abstract The fixed number of hematopoietic stem cells (HSCs) within a single cord blood (CB) unit has limited the use of CB grafts for allogeneic transplantation in adults. Efforts to promote self-renewal and expansion of HSCs have been met with limited success. Using presently available ex-vivo culture techniques HSCs lose their functional properties in proportion to the number of cellular divisions they have undergone. We hypothesized that chromatin modifying agents, 5-aza-2′-deoxycytidine (5azaD) and histone deacetylase inhibitor, trichostatin A (TSA) could reactivate pivotal genes required for retaining the functional properties of dividing HSC. We have demonstrated previously that the fate of human bone marrow CD34+ cells could be altered by the addition of 5azaD/TSA (Milhem et al. Blood.2004;103:4102). In our current studies we hypothesized that in vitro exposure of CB CD34+ cells to chromatin modifying agents might lead to optimal HSC expansion to permit transplantation of adults. A 12.5-fold expansion was observed in the 5azaD/TSA treated CD34+CD90+ cell cultures containing SCF, thrombopoietin and FLT3 ligand (cytokines) in comparison to the input cell number. Despite 9 days of culture, 35.4% ± 5.8% (n = 10) of the total cells in the cultures exposed to chromatin modifying agents were CD34+CD90+ as compared to 1.40 % ± 0.32% in the culture containing cytokines alone. The 12.5-fold expansion of CD34+CD90+ cells was associated with a 9.8-fold increase in the numbers of CFU-mix and 11.5-fold expansion of cobblestone area-forming cells (CAFC). The frequency of SCID repopulating cells (SRC) was 1 in 26,537 in primary CB CD34+CD90+ cells but was increased to 1 in 2,745 CD34+CD90+ cells following 9 days of culture in the presence of 5azaD/TSA resulting in a 9.6-fold expansion of the absolute number of SRC. In contrast, the cultures lacking 5azaD/TSA had a net loss of both CFC/CAFC as well as SRC. The expansion of cells maintaining CD34+CD90+ phenotype was not due to the retention of a quiescent population of cells since all of the CD34+CD90+ cells in the culture had undergone cellular division as demonstrated by labeling with a cytoplasmic dye. CD34+CD90+ cells that had undergone 5–10 cellular divisions in the presence of 5azaD/TSA but not in the absence still retained the ability to repopulate NOD/SCID mice. 5azaD/TSA treated CD34+CD90+ cells, but not CD34+CD90- cells were responsible for in vivo hematopoietic repopulation of NOD/SCID assay, suggesting a strong association between CD34+CD90+ phenotype and their ability to repopulate NOD/SCID mice. We next assessed the effect of 5azaD/TSA treatment on the expression of HOXB4, a transcription factor which has been implicated in HSC self-renewal. A significantly higher level of HOXB4 protein was detected by western blot analysis after 9 days of culture in the cells treated with 5azaD/TSA as compared to cells exposed to cytokines alone. The almost 10-fold increase in SRC achieved using the chromatin modifying agents should be sufficient to increase the numbers of engraftable HSC within a single human CB unit so as to permit these expanded grafts to be routinely used for transplanting adult recipients.


2001 ◽  
Vol 113 (2) ◽  
pp. 470-478 ◽  
Author(s):  
Kyung-Ha Ryu ◽  
Susan Chun ◽  
Steve Carbonierre ◽  
Seock-Ah Im ◽  
Hyung-Lae Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document