Separation of Gvhd from GVL Responses By Modulation of TCR Signaling

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3822-3822
Author(s):  
Mobin Karimi ◽  
Martha Jordon ◽  
Taku Kambayashi

Abstract In allogeneic hematopoietic stem cell transplantation (HSCT), devising new strategies to separate GVHD and GVL responses is of critical importance. However, this is a difficult task, as GVHD and GVL rely on the same recognition of allogeneic MHC by donor-derived T cells. CD8+ T cells are key effector cells that mediate both GVHD and GVL. In mouse models of allogeneic HSCT, the infusion of donor-derived CD8+ T cells eliminates tumor growth but also causes severe GVHD. The activation of CD8+ T cells can be potentially manipulated by perturbing the signaling pathways downstream of the T cell receptor (TCR). TCR signaling depends on the formation of a proximal multimolecular complex, which is nucleated by adaptor proteins such as SLP-76. The phosphorylation of the Y145 residue of SLP-76 is critical for activation of the downstream enzyme PLCg1. As such, a YàF mutation at Y145 of SLP-76 (Y145F) causes decreased TCR-mediated signaling and attenuated T cell function. Here, we investigated how the SLP-76 Y145F mutation in CD8+T cells may impact GVHD and GVL responses in a mouse model of allogeneic HSCT. We employed a major MHC-mismatch mouse model of GVHD involving the transplantation of C57BL/6 (B6)-derived bone marrow (BM) into lethally irradiated Balb/c mice (B6àBalb/c). BM-transplanted mice were also injected with FACS-sorted CD8+ T cells either B6 wildtype (WT) mice or Y145F mice. Recipients of Y145F CD8+ T cells showed significantly (p<0.001) less weight loss, lower clinical score, and improved survival compared to mice injected with WT CD8+ T cells. Next, to determine whether the Y145F CD8+ T cells could mediate GVL effects, BM-transplanted Balb/c mice were additionally challenged intravenously with 1 x 105 luciferase-positive A20 leukemia cells. As expected, BM-transplanted Balb/c mice succumbed from A20 tumor growth, whereas mice injected with WT CD8+ T cells cleared the tumor but developed GVHD. Surprisingly, mice receiving Y145F CD8+ T cells eradicated the leukemic cells but did not develop GVHD. These data suggest that the Y145F mutation in CD8+T cells may be able to separate GVHD from GVL effects. In addition to defective TCR signaling observed in peripheral T cells of Y145F mice, a majority of Y145F KI CD8+ T cells adopt a memory-like CD44hi phenotype through exposure to high levels of IL-4 produced in the thymus of these mice. To test whether the CD44hi CD8+ T cell phenotype was necessary and/or sufficient for the separation of GVHD and GVL effects, BM-transplanted Balb/c mice were injected with FACS-sorted CD44hi or CD44lo CD8+ T cells from WT or Y145F KI mice and challenged with A20 leukemia cells. While BM-transplanted mice receiving CD44hi CD8+ T cells from Y145F mice displayed intact GVL responses without causing GVHD, mice injected with CD44lo CD8+ T cells from Y145F mice displayed impaired ability to clear the tumor cells. Moreover, recipients of CD44hi or CD44lo CD8+ T cells from WT mice cleared the tumor but exhibited severe GVHD. These findings were corroborated with data obtained with an inducible system, whereby CD8+ T cells are affected by the Y145F mutation only after full maturation and thus do not display a CD44hi phenotype (Y145F conditional knock-in mice). Bone marrow-transplanted recipients receiving Y145F conditional knock-in CD8+ T cells developed GVHD and exhibited an attenuated GVL response, suggesting that the Y145F mutation needed to be present during T cell development. Together, these data suggest that either the Y145F mutation or CD44hi phenotype alone in CD8+T cells is insufficient to separate GVHD from GVT. Our data demonstrate that perturbation of the TCR signaling pathway downstream of Y145 of SLP-76 in CD8+ T cells results in separation of GVHD from GVL effects. Experiments to mechanistically test how the Y145F signaling mutation synergizes with the CD44hi phenotype of CD8+ T cells to allow for the separation of the GVHD and GVL effects are currently underway. Our novel and unexpected finding could lead to a novel therapeutic strategy for treatment of acute GVHD after allogeneic HSCT. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 963-963
Author(s):  
Marina Motta ◽  
Bobby Shelvin ◽  
Susan Lerner ◽  
Michael Keating ◽  
William G. Wierda

Abstract Patient with chronic lymphocytic leukemia (CLL) have defects in both cellular and humoral immunity. Despite reported increases in absolute T cell counts in untreated patients with CLL, abnormalities of T cell phenotype and function have been described as well as progressive hypogammaglobulinemia. Furthermore, defects are compounded by current treatments for the disease. Expansion and differentiation of normal antigen-specific T cells depends upon two signals: binding of the T cell receptor to antigen presented in the context of self MHC molecules and ligation of a costimulatory receptor. CD28 is the primary T cell surface costimulatory receptor and is constitutively expressed on almost all CD4+ and about 50% of CD8+ T cells. The ligands CD80 and CD86 bind CD28, thereby transducing the second enhancing signal for T cell proliferation and cytokine secretion. CD152 (CTLA-4) has homology to CD28 and binds to CD80 and CD86 with much higher affinity, but plays a critical role in the down regulating T cell responses and maintenance of peripheral tolerance. Surface CD152 is not normally expressed on resting T cells, but is induced upon activation. We hypothesized that in previously untreated patients with CLL, T cell anergy is the result of increased expression of CD152. Therefore, we studied the expression of surface and cytoplasmic CD152 (sCD152 and cCD152, respectively) in freshly isolated T cells from blood (N=40) and bone marrow (N=14) of previously untreated patients with CLL. Also, the activation status of these T cells was evaluated by evaluating IL-2 receptor subunit expression. CD4+ and CD8+ T cells from patients with CLL demonstrated significant increase in sCD152 and cCD152 compared to T cells from normal donors (Table 1). Table 1 Expression of CD152 by T Cells Mean % Positive T Cell Population Normal CLL P-value sCD152 N=13 N=40 CD4+ 0.8 5.0 <.01 CD4+/CD25+ 1.8 11.5 <.05 CD8+ 1.8 5.0 <.05 cCD152 N=13 N=19 CD4+ 6.9 40.4 <.01 CD4+/CD25+ 26.6 48.0 <.01 CD8+ 1.3 16.9 <.05 Furthermore, patients with CLL had an increased proportion of CD4+/CD25+/CD152+ cells. This subpopulation of T cells is known to have a regulatory function. T cells from patients with CLL (N=25) also showed an activated immunophenotype with significantly increased proportion of CD4+ and CD8+ T cells co-expressing the CD122/CD25 subunits of the IL-2 receptor compared to normal donors (N=10). No significant differences were seen in proportion or pattern of expression of these antigens between peripheral blood and bone marrow cells. These findings suggest that the T cells have been activated, however, may be primed for hyporesponsiveness and peripheral tolerance by expression of CD152. Correlations between CD152 expression and relevant clinical and biological variables were made in these previously untreated patients. The number of CD4+/CD152+ and CD4+/CD25+/CD152+ cells from patients with CLL inversely correlated with serum IgG and IgA levels. These findings suggest a further possible involvement of CD152 in the possible suppression of normal B cells in patients with CLL. The proportion of CD4+/CD25+/CD152+ cells also correlated with advanced Rai stage. In summary, T cells from patients with CLL are potentially primed for anergy by expression of CD152. Functional studies to investigate the role of CD152 and CD4+/CD25+/CD152+ cells in patients with CLL are ongoing, with the goal to develop immunotherapeutic strategies.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3242-3242 ◽  
Author(s):  
Mobin Karimi ◽  
Theresa M Leichner ◽  
Atsushi Satake ◽  
David Raulet ◽  
Taku Kambayashi

Abstract In allogeneic hematopoietic stem cell transplantation (HSCT), identification of mechanisms to control GVHD yet maintain GVL responses is of critical importance. One key effector cell that mediates both GVHD and GVL is the CD8+ T cell, which expands in response to T cell receptor (TCR) stimulation by allogeneic MHC class I molecules during allogeneic HSCT. In addition, co-stimulatory molecules facilitate the TCR-mediated activation process and the effector function of CD8+ T cells. Recent data suggest that NKG2D may play a co-stimulatory role in activation and in augmenting anti-tumor cytotoxic responses of CD8+ T cells. NKG2D is an NK cell-associated receptor that is also expressed on all human CD8+ T cells and on activated/memory mouse CD8+ T cells. NKG2D recognizes a diverse array of MHC-related ligands that are expressed by many tumors and induced on cells under stress such as myeloablative conditioning during HSCT. As the role of NKG2D in allogeneic HSCT is unknown, we hereby investigated the role of NKG2D on CD8+ T cells in a mouse model of GVHD and GVL. Our results show that a large fraction (40-50%) of mouse CD8+ T cells inducibly express NKG2D upon activation by allogeneic MHC in vitro and in vivo. To test the role of NKG2D in GVHD pathogenesis, we employed a major MHC-mismatched mouse model of GVHD involving the transplantation of C57BL/6-derived CD8+ T cells and bone marrow (BM) into lethally irradiated Balb/c mice (B6→Balb/c). Using 3 different approaches to block NKG2D on CD8+ T cells (shRNA-mediated silencing, germline NKG2D deficiency, and antibody blockade), we found that weight loss, clinical score, and survival were significantly improved in transplanted mice with NKG2D blockade. The attenuation in GVHD correlated with a significant reduction in TNFα and IFNγ production, cytotoxicity, and proliferation (BrdU incorporation) by CD8+ T cells. Although CD4+ T cells did not express NKG2D, a protective effect of NKG2D blockade was still observed in GVHD induced by a mixture of CD8+ and CD4+ T cells, albeit to a lesser extent. We next tested the effects of NKG2D on CD8+ T cell-mediated GVL. To this end, irradiated Balb/c mice were transplanted with C57BL/6-derived CD8+ T cells and BM, challenged intravenously with luciferase-positive A20 leukemia cells, and followed by total body imaging of luciferase-expressing cells. Given that NKG2D ligands are constitutively expressed on many tumor cells and plays an important role in their eradication, we predicted that continuous NKG2D blockade would inhibit GVL effects. However, as NKGD ligands are upregulated only transiently on stressed normal tissue, we reasoned that transient NKG2D blockade might be sufficient to attenuate GVHD and allow CD8+ T cells to regain their GVL function. To test this hypothesis, we compared the effect of anti-NKG2D antibody as continuous treatment or as 5-day transient treatment to mice receiving isotype control antibody. As expected, mice that received isotype control antibody cleared the A20 cells but developed severe GVHD. Continuous anti-NKG2D antibody-mediated blockade improved GVHD but also blunted the GVL response leading to increased A20 growth. In contrast, a large proportion of mice transiently treated with anti-NKG2D antibody cleared the A20 cells, while maintaining the attenuated GVHD state. Together, these data support a positive role of NKG2D on CD8+ T cells in mediating GVHD and GVL. Given the transient nature of NKG2D ligand upregulation on stressed tissues, a window of opportunity may exist where transient NKG2D blockade could provide a novel therapeutic strategy for treatment of acute GVHD while preserving the GVL function of CD8+ T cells after allogeneic HSCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 144-144
Author(s):  
Hiroshi Fujiwara ◽  
Fumihiro Ochi ◽  
Toshiki Ochi ◽  
Hiroaki Asai ◽  
Yukihiro Miyazaki ◽  
...  

Abstract Purpose In the context of redirected T-cell based antitumor adoptive immunotherapy, the therapeutic roles played by co-infused CD4+ T cells genetically redirected to the predefined HLA class I-restricted epitope which had been originally recognized by effector CD8+ T cells has not yet been fully discussed. In this study, using an HLA class I-restricted WT1 -specific T-cell receptor (TCR) gene transfer, we in detail examined antileukemia functionality mediated by these gene-modified CD4+ T cells co-infused with similarly gene-modified effector CD8+ T cells as the redirected T cell-based adoptive immunotherapy. Methods Using our unique retroviral vector expressing HLA-A*2402-restricted and WT1235-243-specific TCR a/b genes and shRNAs for endogenous TCRs (WT1-siTCR vector), we genetically modified both CD4+ and CD8+ T cells from the same healthy donor or leukemia patients (termed WT1-siTCR/CD4 and WT1-siTCR/CD8, respectively). First, target-responsive cellular outputs mediated by WT1-siTCR/CD4 was thoroughly examined using flowcytometry, ELISA, 51Cr-release assay, CFSE dilution assay and bioluminescence assay. Next we similarly assessed impacts of WT1-siTCR/CD4 on the antileukemia functionality mediated by concurrentWT1-siTCR/CD8 both in vitro and in vivo. Eventually, we assessed the in vivo therapeutic efficacy of combined administration of WT1-siTCR/CD8 with WT1-siTCR/CD4 using a xenografted mouse model. Results The transcription factor profile demonstrated that WT1-siTCR/CD4 turned a terminal effector, but not regulatory phenotype. Activated WT1-siTCR/CD4 expressed cell-surface CD40L. Target-responsive cytokine production profile of WT1-siTCR/CD4 represented the Th1 helper function in the context of HLA-A*2402. HLA class II molecules expressed by leukemia cells facilitated the recognition of leukemia cells by WT1-siTCR/CD4 in the context of HLA-A*2402. WT1-siTCR/CD4 displayed the delayed cytocidal activity determined by 51Cr release assay. WT1-siTCR/CD4 could produce IFN-g in response to freshly isolated leukemia cells. WT1-siTCR/CD4 displayed the leukemia trafficking activity in vivo. WT1-siTCR/CD4 represented the potential to migrate into bone marrow via CXCR4/CXCL12 axis both in vitro and in vivo. Concurrent WT1-siTCR/CD4 augmented IFN-g production and cytotoxic degranulation mediated by WT1-siTCR/CD8 in response to the cognate epitope via humoral factors. Consequently, the cytocidal activity against autologous leukemia cells mediated by WT1-siTCR/CD8 was augmented in the presence of WT1-siTCR/CD4, both of them generated from normal lymphocytes of the same patient with leukemia in a complete remission. Upon the target recognition, activated WT1-siTCR/CD4 recruited WT1-siTCR/CD8 via CCL3/4-CCR5 axis. Proliferative response and differentiation into central memory T-cell subset mediated by WT1-siTCR/CD8 in response to the cognate epitope and leukemia cells were enhanced in the presence of autologousWT1-siTCR/CD4, but not gene-modified CD4+ T cells (NGM-CD4). CD127 expression on activated WT1-siTCR/CD8 also increased in parallel to this differentiation. Co-infused WT1-siTCR/CD4 augmented the tumor trafficking and persistence of WT1-siTCR/CD8 in vivo, resulting in the greater suppression of leukemia cells in a xenografted mouse model. Finally, in the therapeutic mouse model, co-infusion of WT1-siTCR/CD8 with of WT1-siTCR/CD4 significantly suppressed the growth of inoculated leukemia cells compared to that in mice received co-infusion of WT1-siTCR/CD8 with NGM-CD4 (Fig.1). Correlation between the therapeutic efficacy and survival of infused gene-modified T cells was also observed. Conclusion In results, the combined infusion of WT1-siTCR/CD8 with WT1-siTCR/CD4, but not NGM-CD4 obviously demonstrates the enhanced antileukemia efficacy via diverse mechanisms. Now we have just started a clinical trial using gene-modified T cells with WT1-siTCR vector for the treatment of patients with refractory acute myeloid leukemia and myeloid dysplastic syndrome. Because redirected T cells employed in this trial encompassed both WT1-siTCR/CD4 and WT1-siTCR/CD8, we are planning to clinically verify the significance of WT1-siTCR/CD4 in the redirected T cell-based antileukemia adoptive immunotherapy. (Fig.1) Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4221-4221
Author(s):  
Hiroaki Asai ◽  
Hiroshi Fujiwara ◽  
Toshiki Ochi ◽  
Yukihiro Miyazaki ◽  
Fumihiro Ochi ◽  
...  

Abstract Abstract 4221 Background & Purpose: Recent findings regarding leukemia stem cell (LSC) have emphasized the importance of suppression of LSC for the achievement of durable remission, the first requisite to establish cure of leukemia. For this subject, successful graft-vs.-leukemia (GvL) effect in allogeneic hematopoietic stem cell transplantation (allo-HSCT) against human leukemias has strongly illustrated the importance of anti-leukemia immunity. Additionally, WT1, one of well-known leukemia-associated antigens, has been obviously demonstrated to be expressed by LSCs in bone marrow niche (Saito Y et al, Sci Transl Med.2010). On the other hand, cell-cycle quiescence of LSCs in bone marrow niche is importantly implicated in their chemoresistance. Taking all above, in this study, we set out to answer questions whether therapeutically adopted T-cell immunity towards WT1 enabled to suppress LSC in vivo, and whether cell-cycle status of leukemia cells affected the sensitivity to cyotocidal activity mediated by WT1-specific cytotoxic T cells (CTLs). Methods: Approval for this study was obtained from the Institutional Review Board of Ehime University Hospital. Written informed consent was given by all patients, healthy volunteers in accordance with the Declaration of Helsinki. Peripheral CD8+ T cells obtained from AML or ALL patients in complete remission (CR) or healthy individuals were gene-modified to express HLA-A*2402-restricted and WT1235–243 nonamer -specific T-cell receptor (TCR) using our unique TCR-a/b gene expression vector carrying silencers for endogenous TCRs (WT1-siTCR vector) were generated as effector cells. Bone marrow CD34+ leukemia (L-BMCD34+) cells isolated using immunomagnetic beads from HLA-A*2402 positive or negative patients with AML or ALL were serially transplanted into NOD/scid/γcnull (NOG) mice as previously reported (Ochi T et al. Blood, 2011). 12 weeks later, engrafted leukemia cells in murine bone marrow were examined using a flowcytometry. In some experiments, after engrafted, first transplanted mice were treated with intraperitoneal administration of high dose (150mg/kg) of cytosine arabinoside (Ara-C). A week later, those mice received intravenous administration of gene-modified autologous CD8+ T cells to express WT1-specific TCR or non-gene-modified (NGM) ones in combination with intraperioneal administration of 500u of IL-2 every 2 days. A week after therapeutic T-cell infusion, bone marrow cells were harvested, and transplantation into second mice. 12 weeks later, engrafted human leukemia cells in murine bone marrow were assessed. Next, using a time-lapse photo assay and fluorescent ubiqutination-based cell-cycle indicator (Fucci)-labeled K562-A24 cells which are known to produce high amounts of WT1 mRNA and are positive for HLA-A*2402, we directly assessed the impact of cell-cycle status of leukemia cells on their sensitivity to redirected CTL towards WT1 in vitro. Results: Using isolated L-BMCD34+ cells, LSCs were detectable as leukemia initiating cell in serially transplanted NOG mice. High dose of Ara-C treatment alone was unable to eradicate LSCs. An experiment using samples from a patient with HLA-A*2402+ ALL revealed that intravenously infused gene-modified autologous peripheral CD8+ T cells in CR successfully reduced leukemia burden in bone marrow which were refractory to high dose of Ara-C. In serial transplantation experiments using samples from AML patients, therapeutic infusion of redirected CD8+ T cells to express WT1-specific TCR, but not NGM ones in nadir state successfully eradicated LSCs out of murine bone marrow. In vitro time-lapse photo assay directly illustrated that retargeted CD8+T cells towards WT1 killed fucci-labeled K562-A24 cells irrelevantly to cell-cycle status of target leukemia cells. Summary: In this study, when leukemia mass burden was reduced, therapeutically infused gene-modified CD8+ T cells targeting WT1 successfully enabled to inhibit LSCs in vivo. Furthermore cell-cycle status of leukemia cells which is importantly implicated in their chemoresistance in bone marrow niche, did not affect WT1-specific cytocidal activity mediated by genetically redirected CTLs at all. Although it is preliminary, our observation encourages us to actively introduce redirected T cell-based antileukemia adoptive immunotherapy, aiming at a cure of leukemias. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 12 (11) ◽  
pp. e1006030 ◽  
Author(s):  
Aileen G. Rowan ◽  
Aviva Witkover ◽  
Anat Melamed ◽  
Yuetsu Tanaka ◽  
Lucy B. M. Cook ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3533-3533
Author(s):  
Mathias Witzens-Harig ◽  
Dirk Hose ◽  
Michael Hundemer ◽  
Simone Juenger ◽  
Anthony D. Ho ◽  
...  

Abstract Introduction: The bone marrow (BM) is a site of induction of tumour antigen specific T cell responses in many malignancies. We have demonstrated in the BM of myeloma patients high frequencies of spontaneously generated CD8 memory T cells with specificity for the myeloma-associated antigen MUC1, which were not detectable in the peripheral blood (PB). Besides MUC1, carcinoembryonic antigen was recently identified as a tumour-associated antigen in a patient with multiple myeloma. Up to now, spontaneous CD4 T cell responses against myeloma-associated antigens have not been reported. We undertook this study to evaluate to what extent spontaneous CD4 T cell responses against myeloma antigens occur during myeloma progression and if MUC1 or carcinoembryonic antigen represent immunogenic targets of spontaneous CD4 and CD8 T cell responses. Methods: Altogether, 78 patients with multiple myeloma were included into the study. Presence of functionally competent antigen specific T cells was evaluated by ex vivo short term (40 h) IFN-γ Elispot analyses. CD4 T cell responses against MUC1 were assessed by stimulation of purified CD4 T cell fractions with antigen pulsed, autologous dendritic cells (DCs) pulsed with two synthetic 100 meric polypeptides (pp1-100ss and (137–157)5 tr) that can be processed and presented via multiple HLA-II alleles. CD4- or CD8 T cell reactivity against carcinoembryonic antigen was assessed on purified CD4- and CD8 T cell fractions by pulsing DCs with highly purified CEA derived from culture supernatants of an epithelial carcinoma cell line. CD8 responses against MUC1 were analyzed by stimulation of HLA-A2+ patients derived purified T cells with DCs loaded with HLA-A2 restricted MUC1-derived nonameric peptide LLLLTVLTV. As negative control antigen for MUC1 polypeptides and CEA human IgG was used for pulsing DCs at identical concentrations while HLA-A2-restricted peptide SLYNTVATL derived from HIV was used as control antigen for LLLLTVLTV. Test antigen specific reactivity was defined by significantly increased numbers of IFN-γ spots in triplicate test wells compared to control wells (p<0.05, students T test). Results: 8 out of 19 tested patients (42%) contained MUC1 specific CD8 T cells in their bone marrow, while MUC1 specific CD4 T cells were detected in the BM of 30% of the cases (3/10). Interestingly, in peripheral blood (PB) CD8 reactivity against MUC1 was detectable in only 1 out of 10 patients while CD4 reactivity in PB was not detectable at all (0/10). CEA was specifically recognized by BM CD8 T cells from 5 out of 30 patients (17%) and by BM CD4 T cells from 5 out of 18 patients (28%). CEA was not recognized by CD4 and CD8 T cells in the PB of the same patients (0/13). Conclusion: Spontaneous T helper responses against tumour-associated antigens occur in the BM at similar levels as antigen specific CD8 T cells responses while they are virtually undetectable in the PB. Compared to CEA, MUC1 induces CD8 T cell responses in a much higher proportion of myeloma patients. Nevertheless, our data suggest that CEA may trigger spontaneous T cell responses against multiple myeloma in a considerable number of patients. Thus, systematic functional analyses of this potential tumour antigen in multiple myeloma appears to be justified.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 693-693
Author(s):  
Christine Dierks ◽  
Hong Ma ◽  
Hendrik Veelken ◽  
Markus Warmuth ◽  
Francisco Adrian

Abstract The ITK-SYK fusion protein was previously described to be present in 17% of unspecified peripheral T-cell lymphomas. Here we demonstrate that expression of ITK-SYK in the bone marrow of Balb\c mice causes T-cell lymphomas in mice with a latency of only 3–4 weeks. The disease is characterized by infiltration of the spleen, lymph nodes, bone marrow and the skin with malignant T-cells and progredient destruction of these organs. The mice die about 2 months after the transplantation due to dramatic weight loss caused by infiltration of T-cells into the colon and because of progredient anemia end neutropenia due to progredient infiltration of the bone marrow. The malignant T-cells were characterized as a mixed population of CD3+, CD4+, CD8- T cells and CD3+, CD4-, CD8- T-cells. The malignant disease was accompanied by a generalized inflammatory reaction including upregulation of the inflammatory cytokines IL-5 and INF-γ. Modulation of the membrane binding of ITK-SYK or its binding to Cbl by point mutations in the pleckstrin homology domain of ITK could alter the transforming activity of ITK-SYK. The intact kinase domain was essential for the transformation process and the disease could be reversed by treatment of diseased mice with the Syk-inhibitor Curcumine. Our results demonstrate that the fusion protein ITK-SYK causes T-cell lymphomas in mice and mimics the human disease. Therefore pharmacological inhibition of Syk in patients with U-PTCL carrying the ITK-SYK fusion protein might be a new and effective treatment strategy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2623-2623 ◽  
Author(s):  
Bindu Varghese ◽  
Behnaz Taidi ◽  
Adam Widman ◽  
James Do ◽  
R. Levy

Abstract Introduction: Anti-idiotype antibodies against B cell lymphoma have shown remarkable success in causing tumor regression in the clinic. In addition to their known ability to mediate ADCC, anti-idiotype antibodies have also been shown to directly inhibit the proliferation of tumor cells by sending negative growth signals via the target idiotype. However, further studies to investigate this mechanism have been hindered by the failure of patient tumor cells to grow ex vivo. Methods and Results: In order to study this phenomenon further, we developed an antibody against the idiotype on an A20 mouse B lymphoma cell line. A radioactive thymidine incorporation assay showed decreased A20 cell proliferation in the presence of the anti-id antibody ex vivo. In vivo, when mice were treated intraperitoneally (i.p.) with 100 μg of antibody 3 hours post-tumor inoculation (1×106 A20 subcutaneously (s.c.)), tumor growth was delayed for greater than 40 days after which the tumor began to grow once again. Further analysis of these escaping tumor cells by flow cytometry showed that that the tumor cells escaped the antibody-mediated immune response by down-regulating expression of idiotype and IgG on their surfaces although the cells retained idiotype expression intracellularly. This down-regulation of surface idiotype rendered the tumor cells resistant to both ADCC and signaling-induced cell death. The addition of an immunostimulatory bacterial mimic (CpG-DNA; 100 μg × 5 intratumoral (i.t.) injections; Days 2, 3 4, 6 & 8) to antibody therapy (Day 0; 100 μg i.p.) cured large established tumors (Day 0 = 1 cm2) and prevented the occurrence of tumor escapees (p&lt;0.0001). Antibody plus CpG combination therapy in tumor-bearing mice deficient for CD8+ T cells demonstrated the critical role of CD8+ T cells in A20 tumor eradication (p&lt;0.005). Depletion of CD4+ T cells was found to have no significant impact on the therapy. We also found that when mice were inoculated with two tumors and treated with anti-idiotype antibody (i.p.) followed by intratumoral CpG in just one tumor (Day 0=1 cm2; anti-idiotype antibody 100 μg Day 0; 100 μg CpG Days 2, 3, 4, 6 & 8), untreated tumors regressed just as well as CpG-treated tumors indicating a systemic anti-tumor immune response was generated. Conclusion: Anti-idiotype therapy, although effective in delaying tumor growth, frequently generates antigen-loss variants. However, we found that when anti-idiotype antibodies were combined with CpG, even large established tumors were cured due to systemic CD8+ T cell-dependent tumor immunity. Rather than simply mediating ADCC against a single tumor antigen, which requires the constant infusion of antibody to hamper tumor growth, we hypothesize a cytotoxic T-cell response against many tumor antigens was also generated. Such a diverse T-cell repertoire can prevent the emergence of tumor escapees and collectively provide long-lasting tumor protection. These pre-clinical results suggest that anti-tumor antibodies combined with CpG warrant further study in patients with B cell lymphoma.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3539-3539
Author(s):  
Jacopo Mariotti ◽  
Kaitlyn Ryan ◽  
Paul Massey ◽  
Nicole Buxhoeveden ◽  
Jason Foley ◽  
...  

Abstract Abstract 3539 Poster Board III-476 Pentostatin has been utilized clinically in combination with irradiation for host conditioning prior to reduced-intensity allogeneic hematopoietic stem cell transplantation (allo-HSCT); however, murine models utilizing pentostatin to facilitate engraftment across fully MHC-disparate barriers have not been developed. To address this deficit in murine modeling, we first compared the immunosuppressive and immunodepleting effects of pentostatin (P) plus cyclophosphamide (C) to a regimen of fludarabine (F) plus (C) that we previously described. Cohorts of mice (n=5-10) received a three-day regimen consisting of P alone (1 mg/kg/d), F alone (100 mg/kg/d), C alone (50 mg/kg/d), or combination PC or FC. Combination PC or FC were each more effective at depleting and suppressing splenic T cells than either agent alone (depletion was quantified by flow cytometry; suppression was quantified by cytokine secretion after co-stimulation). The PC and FC regimens were similar in terms of yielding only modest myeloid suppression. However, the PC regimen was more potent in terms of depleting host CD4+ T cells (p<0.01) and CD8+ T cells (p<0.01), and suppressing their function (cytokine values are pg/ml/0.5×106 cells/ml; all comparisons p<0.05) with respect to capacity to secrete IFN-g (13±5 vs. 48±12), IL-2 (59±44 vs. 258±32), IL-4 (34±10 vs. 104±12), and IL-10 (15±3 vs. 34±5). Next, we evaluated whether T cells harvested from PC-treated and FC-treated hosts were also differentially immune suppressed in terms of capacity to mediate an alloreactive host-versus-graft rejection response (HVGR) in vivo when transferred to a secondary host. BALB/c hosts were lethally irradiated (1050 cGy; day -2), reconstituted with host-type T cells from PC- or FC-treated recipients (day -1; 0.1 × 106 T cells transferred), and challenged with fully allogeneic transplant (B6 donor bone marrow, 10 × 106 cells; day 0). In vivo HVGR was quantified on day 7 post-BMT by cytokine capture flow cytometry: absolute number of host CD4+ T cells secreting IFN-g in an allospecific manner was ([x 106/spleen]) 0.02 ± 0.008 in recipients of PC-treated T cells and 1.55 ± 0.39 in recipients of FC-treated cells (p<0.001). Similar results were obtained for allospecific host CD8+ T cells (p<0.001). Our second objective was to characterize the host immune barrier for engraftment after PC treatment. BALB/c mice were treated for 3 days with PC and transplanted with TCD B6 bone marrow. Surprisingly, such PC-treated recipients developed alloreactive T cells in vivo and ultimately rejected the graft. Because the PC-treated hosts were heavily immune depleted at the time of transplantation, we reasoned that failure to engraft might be due to host immune T cell reconstitution after PC therapy. In an experiment performed to characterize the duration of PC-induced immune depletion and suppression, we found that although immune depletion was prolonged, immune suppression was relatively transient. To develop a more immune suppressive regimen, we extended the C therapy to 14 days (50 mg/Kg) and provided a longer interval of pentostatin therapy (administered on days 1, 4, 8, and 12). This 14-day PC regimen yielded CD4+ and CD8+ T cell depletion similar to recipients of a lethal dose of TBI, more durable immune depletion, but again failed to achieve durable immune suppression, therefore resulting in HVGR and ultimate graft rejection. Finally, through intensification of C therapy (to 100 mg/Kg for 14 days), we were identified a PC regimen that was both highly immune depleting and achieved prolonged immune suppression, as defined by host inability to recover T cell IFN-g secretion for a full 14-day period after completion of PC therapy. Finally, our third objective was to determine with this optimized PC regimen might permit the engraftment of MHC disparate, TCD murine allografts. Indeed, using a BALB/c-into-B6 model, we found that mixed chimerism was achieved by day 30 and remained relatively stable through day 90 post-transplant (percent donor chimerism at days 30, 60, and 90 post-transplant were 28 ± 8, 23 ± 9, and 21 ± 7 percent, respectively). At day 90, mixed chimerism in myeloid, T, and B cell subsets was observed in the blood, spleen, and bone marrow compartments. Pentostatin therefore synergizes with cyclophosphamide to deplete, suppress, and limit immune reconstitution of host T cells, thereby allowing engraftment of T cell-depleted allografts across MHC barriers. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document