Inhibition of Wnt Signaling By Dimethyl Fumarate Results in in Vitro and in Vivo Clearance of Chronic Lymphocytic Leukemia Cells and Has Additive Activity with Ibrutinib

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4683-4683 ◽  
Author(s):  
Christina C.N. Wu ◽  
Fitzgerald Lao ◽  
Hongying Li ◽  
Laura Rassenti ◽  
Thomas J. Kipps ◽  
...  

Abstract Background: Small molecules that inhibit B cell survival pathways are effective treatments for patients with chronic lymphocytic leukemia (CLL). However, such therapies are not curative, and resistance can develop in some patients. Combination therapies with agents that inhibit several CLL survival pathways may allow for more complete responses, and help prevent treatment resistance. Previous data has shown that the pro-survival Wnt pathway is highly active in CLL and is a negative prognostic factor, and therefore is an attractive target for novel therapies to combine with agents like ibrutinib. Dimethyl fumarate (DMF) is an orally bioavailable fumaric acid ester with immunomodulatory properties, including inhibition of the NF-kB signaling cascade. DMF has been evaluated as a systemic treatment of psoriasis as well as multiple sclerosis. Our group previously observed anti-CLL effects of DMF, mediated in part through oxidative stress. Herein we describe a novel mechanism of action of DMF and ibrutinib, mediated by inhibition of the Wnt signaling pathway. Methods: Effects of DMF and ibrutinib on Wnt signaling were determined using a cell-based LEF/TCF beta-lactamase reporter gene FRET assay. In vitro activity was assessed in primary CLL from patients with indolent and aggressive disease. In vivo activity was evaluated in Rag2-/- gamma chain-/- immunodeficient (RG-KO) mice, which were engrafted with human CLL cells by intraperitoneal injection. DMF and/or ibrutinib were administrated to mice by oral gavage, at clinically used doses and schedules. Results: Both DMF and ibrutinib have an alpha-beta unsaturated ketone that can react with essential free cysteines in the Wnt-driven LEF1 transcription factor. This effect was confirmed by a cell-based reporter gene assay in which DMF inhibited LEF/TCF dependent gene expression at low μM levels. Ibrutinib also inhibited Wnt signaling activity in the same assay. In short term cultures, DMF was cytotoxic to primary CLL cells from patients with both indolent and aggressive disease, at low uM concentrations. The combination of DMF and ibrutinib resulted in a higher degree of CLL cell clearance than achieved by either agent alone (p < 0.05 after multiple comparison adjustments, Dunnet’s method). To evaluate the effect in a preclinical CLL xenograft animal model, we administered DMF by oral lavage to RG-KO mice engrafted with human CLL cells. Doses ranging from 3 to 30 mg/kg BID for 7 days resulted in dose dependent clearance of CLL cells compared to vehicle controls, without observable toxicity to the recipient animals. Moreover, the combination of DMF and ibrutinib resulted in a higher degree of CLL cell clearance than achieved by either agent alone. Preliminary FACS analyses revealed that DMF selectively targets CLL subpopulations of cells with aggressive characteristics, as assessed by CD38 expression. Further molecular analyses of predictive or correlative biomarkers are ongoing. Conclusions: DMF inhibits Wnt signaling, and has single agent activity as a treatment for CLL. The combination of DMF and ibrutinib is more effective than either agent alone, particularly in aggressive disease, and is well tolerated. Clinical trials of DMF in CLL are warranted, and are planned. This work is supported by a Leukemia and Lymphoma Society Specialized Center of Research Grant (7005-14) and by the CLL Research Consortium (5P01CA081534-14). Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2882-2882
Author(s):  
Sarah E. M. Herman ◽  
Paul M. Barr ◽  
Erin M. McAuley ◽  
Delong Liu ◽  
Jonathan W. Friedberg ◽  
...  

Abstract Abstract 2882 B-cell receptor (BCR) signaling contributes to the pathogenesis of chronic lymphocytic leukemia (CLL). Spleen tyrosine kinase (SYK) activated directly downstream of the BCR is essential for the induction of proliferation and survival pathways. The SYK inhibitor fostamatinib disrupts BCR signaling and was the first such inhibitor to show significant clinical activity in patients with mature B-cell malignancies. Fostamatinib has been shown to both induce apoptosis in unstimulated CLL cells as well as to inhibit BCR induced anti-apoptotic signals in vitro (Gobessi et al., 2009; Quiroga et al., 2009). Similarly, using the Eμ-TCL1 transgenic mouse model, fostamatinib has been shown to inhibit the growth of malignant B-cells without significant alteration of normal B-cells (Suljagic et al., 2010). In the first phase I/II clinical trial investigating fostamatinib in relapsed B-cell non-Hodgkin's lymphoma (NHL) and CLL, clinical efficacy was observed in a variety of histologies with the highest response rate in CLL/SLL patients (Friedberg et al., 2010). Eleven CLL/SLL patients enrolled in this trial donated cellular material for correlative studies. Using these primary tumor samples, we evaluated the effects of fostamatinib on CLL cells in vivo after one cycle of treatment. We first validated the on-target effect of fostamatinib by using quantitative RT-PCR to measure expression of validated pathway specific gene signatures. Fostamatinib greatly down-regulated 12/12 evaluated BCR signature genes and significantly reduced the BCR gene signature score (computed as the average expression of the pathway specific genes; p=.002) Effective inhibition of BCR signaling was confirmed by a significant reduction in the phosphorylation of both BTK and ERK; two key BCR signaling molecules located downstream of SYK activation. Interestingly, BCR signaling was inhibited in CLL cells from all patients regardless of response to therapy. We next expanded our analysis to look at NF-κB and MYC gene signatures. We found that 11/11 representative NF-κB signature genes and 5/5 MYC signature genes were also down-regulated resulting in a significant reduction in both gene signature scores (p=.004 and p=.020, respectively). Confirming these results, we also observed a significant reduction in JUNB (p<.001) and MYC (p=.026) at the protein level. Interestingly, the reduction in NF-κB and MYC signature scores was highly correlated with the degree of reduction in BCR signaling suggesting that these pathways are linked. In addition to changes in the gene signatures we also observed a significant reduction in the cellular activation immunephenotype; CD69 and CD86 expression were significantly reduced by fostamatinib (p=.033 and p=.004, respectively). Further, we found that CD38 (an activation marker with prognostic significance) was also reduced on treatment although not to a significant extent. Finally, fostamatinib significantly reduced tumor proliferation as determined by the percentage of CLL cells expressing Ki67 (p=.005). Eight of the 11 patients in this study achieved a clinically significant response; interestingly however, the 3 non-responders demonstrated significantly brighter CD38 expression with an MFI up to 9-times the CD38 MFI in responders. A possible role of CD38 as a biomarker for response should be further explored in patients treated with BCR directed kinase inhibitors. In conclusion, fostamatinib and other inhibitors of BCR-related kinases constitute a major advance in the treatment of CLL. In vitro data with these compounds suggests that interruption of BCR signaling and survival pathways activated in the tissue microenvironments are likely responsible for the observed clinical response as only a moderate direct induction of apoptosis is seen in vitro. Here we demonstrate that inhibition of BCR-mediated signaling by fostamatinib results in a reduction in CLL proliferation and activation in vivo. Together these data provide a blueprint to further study the mechanism of action and resistance mechanisms of not only fostamatinib but also other BCR targeted therapeutics. This work was supported in part by the Intramural Research Program of the National, Heart, Lung and Blood Institute and by the University of Rochester SPORE in lymphoma P50 CA13080503, Rigel and the James P. Wilmot Foundation. Disclosures: Friedberg: Rigel: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (17) ◽  
pp. 3501-3509 ◽  
Author(s):  
Matthew S. Davids ◽  
Jing Deng ◽  
Adrian Wiestner ◽  
Brian J. Lannutti ◽  
Lili Wang ◽  
...  

Abstract Stroma induces treatment resistance in chronic lymphocytic leukemia (CLL), possibly because of alterations in the BCL-2 family of proteins, which are key regulators of apoptosis. We previously developed BH3 profiling, a functional assay that assesses mitochondrial depolarization in response to BH3-only peptides, to measure “apoptotic priming,” the proximity of a cell to the apoptotic threshold. In the present study, we use BH3 profiling to show that CLL cells from the PB are highly primed. Increased priming is associated with improved clinical response and, unexpectedly, with unmutated IGHV status. Coculturing CLL cells in vitro with stroma decreases priming. Using matched PB, BM, and lymph node compartment samples, we found in vivo that BM-derived CLL cells are the least primed. CLL cells cocultured with stroma were treated with the PI3K δ-isoform inhibitor CAL-101 (GS1101). CAL-101 caused CLL cell de-adhesion, leading to increased CLL cell priming. Stimulation of CLL cells with anti-IgM or CXCL12 caused decreased priming that could be reversed by CAL-101. Our results show that inhibition of stromal interactions leading to displacement of CLL cells into the blood by CAL-101 in vivo may increase CLL cell priming, suggesting a mechanism by which agents inducing lymphocyte redistribution might facilitate improved clinical response when used in combina-tion with other therapies.


Blood ◽  
2021 ◽  
Author(s):  
Billy Michael Chelliah Jebaraj ◽  
Annika Müller ◽  
Rashmi Priyadharshini Dheenadayalan ◽  
Sascha Endres ◽  
Philipp M. Roessner ◽  
...  

Covalent Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib have proven to be highly beneficial in the treatment of chronic lymphocytic leukemia (CLL). Interestingly, the off-target inhibition of IL-2-inducible T-cell kinase (ITK) by ibrutinib may also play a role in modulating the tumor microenvironment, potentially enhancing the treatment benefit. However, resistance to covalently binding BTK inhibitors can develop by a mutation in cysteine 481 of BTK (C481S), which prevents the irreversible binding of the drugs. In the present study we performed pre-clinical characterization of vecabrutinib, a next generation non-covalent BTK inhibitor, with ITK inhibitory properties similar to those of ibrutinib. Unlike ibrutinib and other covalent BTK inhibitors, vecabrutinib showed retention of the inhibitory effect on C481S BTK mutants in vitro, similar to that of wildtype BTK. In the murine Eµ-TCL1 adoptive transfer model, vecabrutinib reduced tumor burden and significantly improved survival. Vecabrutinib treatment led to a decrease in CD8+ effector and memory T-cell populations, while the naïve populations were increased. Of importance, vecabrutinib treatment significantly reduced frequency of regulatory CD4+ T-cells (Tregs) in vivo. Unlike ibrutinib, vecabrutinib treatment showed minimal adverse impact on activation and proliferation of isolated T-cells. Lastly, combination treatment of vecabrutinib with venetoclax was found to augment treatment efficacy, significantly improve survival and lead to favourable reprogramming of the microenvironment in the murine Eµ-TCL1 model. Thus, non-covalent BTK/ITK inhibitors such as vecabrutinib may be efficacious in C481S BTK mutant CLL, while preserving the T-cell immunomodulatory function of ibrutinib.


Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4389-4395 ◽  
Author(s):  
Freda K. Stevenson ◽  
Federico Caligaris-Cappio

Abstract The finding that chronic lymphocytic leukemia (CLL) consists of 2 clinical subsets, distinguished by the incidence of somatic mutations in the immunoglobulin (Ig) variable region (V) genes, has clearly linked prognosis to biology. Antigen encounter by the cell of origin is indicated in both subsets by selective but distinct expression of V genes, with evidence for continuing stimulation after transformation. The key to distinctive tumor behavior likely relates to the differential ability of the B-cell receptor (BCR) to respond. Both subsets may be undergoing low-level signaling in vivo, although analysis of blood cells limits knowledge of critical events in the tissue microenvironment. Analysis of signal competence in vitro reveals that unmutated CLL generally continues to respond, whereas mutated CLL is anergized. Differential responsiveness may reflect the increased ability of post-germinal center B cells to be triggered by antigen, leading to long-term anergy. This could minimize cell division in mutated CLL and account for prognostic differences. Unifying features of CLL include low responsiveness, expression of CD25, and production of immunosuppressive cytokines. These properties are reminiscent of regulatory T cells and suggest that the cell of origin of CLL might be a regulatory B cell. Continuing regulatory activity, mediated via autoantigen, could suppress Ig production and lead to disease-associated hypogammaglobulinemia. (Blood. 2004;103:4389-4395)


Blood ◽  
2016 ◽  
Vol 127 (5) ◽  
pp. 582-595 ◽  
Author(s):  
Marwan Kwok ◽  
Nicholas Davies ◽  
Angelo Agathanggelou ◽  
Edward Smith ◽  
Ceri Oldreive ◽  
...  

Key PointsATR inhibition is synthetically lethal to TP53- or ATM-defective CLL cells. ATR targeting induces selective cytotoxicity and chemosensitization in TP53- or ATM-defective CLL cells in vitro and in vivo.


Hematology ◽  
2011 ◽  
Vol 2011 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Jan A. Burger

Abstract Intrinsic factors such as genetic lesions, anti-apoptotic proteins, and aberrant signaling networks within leukemia cells have long been the main focus of chronic lymphocytic leukemia (CLL) research. However, over the past decade, it became increasingly clear that external signals from the leukemia microenvironment make pivotal contributions to disease progression in CLL and other B-cell malignancies. Consequently, increasing emphasis is now placed on exploring and targeting the CLL microenvironment. This review highlights critical cellular and molecular pathways of CLL-microenvironment cross-talk. In vitro and in vivo models for studying the CLL microenvironment are discussed, along with their use in searching for therapeutic targets and in drug testing. Clinically, CXCR4 antagonists and small-molecule antagonists of B cell receptor (BCR)-associated kinases (spleen tyrosine kinase [Syk], Bruton's tyrosine kinase [Btk], and PI3Kδ) are the most advanced drugs for targeting specific interactions between CLL cells and the miocroenvironment. Preclinical and first clinical evidence suggests that high-risk CLL patients can particularly benefit from these alternative agents. These findings indicate that interplay between leukemia-inherent and environmental factors, nature and nurture determines disease progression in CLL.


2018 ◽  
Vol 215 (2) ◽  
pp. 681-697 ◽  
Author(s):  
Erika Tissino ◽  
Dania Benedetti ◽  
Sarah E.M. Herman ◽  
Elisa ten Hacken ◽  
Inhye E. Ahn ◽  
...  

The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib, which antagonizes B cell receptor (BCR) signals, demonstrates remarkable clinical activity in chronic lymphocytic leukemia (CLL). The lymphocytosis experienced by most patients under ibrutinib has previously been attributed to inhibition of BTK-dependent integrin and chemokine cues operating to retain the tumor cells in nodal compartments. Here, we show that the VLA-4 integrin, as expressed by CD49d-positive CLL, can be inside-out activated upon BCR triggering, thus reinforcing the adhesive capacities of CLL cells. In vitro and in vivo ibrutinib treatment, although reducing the constitutive VLA-4 activation and cell adhesion, can be overcome by exogenous BCR triggering in a BTK-independent manner involving PI3K. Clinically, in three independent ibrutinib-treated CLL cohorts, CD49d expression identifies cases with reduced lymphocytosis and inferior nodal response and behaves as independent predictor of shorter progression-free survival, suggesting the retention of CD49d-expressing CLL cells in tissue sites via activated VLA-4. Evaluation of CD49d expression should be incorporated in the characterization of CLL undergoing therapy with BCR inhibitors.


1988 ◽  
Vol 80 (3) ◽  
pp. 129-133 ◽  
Author(s):  
Robert Schrek ◽  
William R. Best ◽  
Stefano Stefani

Blood ◽  
1984 ◽  
Vol 64 (3) ◽  
pp. 667-671 ◽  
Author(s):  
F Lauria ◽  
D Raspadori ◽  
S Tura

Abstract Abnormalities of T lymphocytes in B cell chronic lymphocytic leukemia (B-CLL) have been extensively documented by several immunologic investigations. Following recent studies pointing to the favorable effect of TP-1, a partially purified extract of calf thymus, on the T cell-mediated immunity of several diseases, including Hodgkin's disease, we have used monoclonal antibodies and the enriched T lymphocytes of 16 untreated B-CLL patients to evaluate the proportion of T cell subsets before and after the administration of TP-1. In addition, the proliferative response to phytohemagglutinin (PHA) and the helper function in a pokeweed mitogen (PWM) system were assessed. In ten cases, the effect of TP-1 was also studied in vitro by evaluating the same parameters before and after incubation of B-CLL T cells with the drug. The study demonstrated that in vivo administration of TP-1 increases significantly (P less than .001) the proportion of the defective helper/inducer T cell population (OKT4-positive cells) in B-CLL, leading to a near normal OKT4/OKT8 ratio. Furthermore, the improved phenotypic profile was accompanied by an increased proliferative response to PHA and, in particular, by a significant increase (P less than .01) of T helper capacity; this increase was, however, insufficient to enable the normalization of the serum immunoglobulin levels. The in vitro incubation of B-CLL T lymphocytes did not succeed in producing significant modifications in distribution and function.


Sign in / Sign up

Export Citation Format

Share Document