Exome Sequencing to Define a Genetic Signature of Plasma Cells in Systemic AL Amyloidosis

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 726-726 ◽  
Author(s):  
Eileen M Boyle ◽  
Brian A Walker ◽  
Dorota Rowczienio ◽  
Christopher P Wardell ◽  
Alexander Murison ◽  
...  

Abstract Introduction: Systemic light chain amyloidosis (AL) is characterized by the deposition of immunoglobulin light chains as amyloid fibrils in different organs, where they form toxic protein aggregates. The underlying disease is a plasma cell disorder, likely a monoclonal gammopathy, but limited data are available on the biology of the plasma cell clone underlying AL and existing studies have concentrated on chromosomal abnormalities. We report the final findings of the first exome sequencing to define the plasma cell signature in AL and compared this to other mature lymphoid malignancies. Methods: Whole exome sequencing was performed on 27 newly diagnosed, histologically proven amyloidosis patients. DNA was extracted from peripheral blood and CD138+ plasma cells and whole exome sequencing was performed using SureSelect (Agilent). In addition to capturing the exome, extra baits were added covering the IGH, IGK, IGL and MYC loci in order to determine the breakpoints associated with translocations in these genes. Tumour and germline DNA were sequenced and data processed to generate copy number, acquired variants and translocation breakpoints in the tumour. Patient demographics: The median age at diagnosis was 69 (range: 41-81) years old. All cases were histologically proven, newly diagnosed AL amyloid. 74% were lambda restricted and 26% kappa with median respective median involved sFLC were 180 mg/L (range: 58.9-986 mg/L) and 730 mg/L (609-3190 mg/L) respectively. The median plasmocytosis was 17.5% (range: 2-90%). 78% of them had evidence of heart involvement, 70% had renal involvement and 33% had liver involvement. Mutation load: The median number of acquired non-synonymous variants per sample was 65 (range 7-285) with 40 (4-251) potentially disease causing variants per sample. Mutational landscape: Although no genes were significantly mutated, the genes closest to significance were NRAS, PIM1, and HIST1H3F. We identified 2 cases with NRAS mutations in the codon 61 (Q61R and Q61H) but no KRAS mutations were seen. Interestingly, there were mutations in some of the significantly mutated genes in myeloma such as EGR1 (Q95R), DIS3 (M505L and D317E) and TRAF3 (splice site). One patient bore a CARD11 (R1077W) mutation, more commonly seen in non-Hodgkin’s lymphoma. Although 22% of our samples had a t(11;14) translocations we did not observe any mutations in CCND1. We identified a t(1;14) (p36;q32) previously described in non-hodgkin lymphoma in one patient. We also identified a Myc translocation in a patient who met the criteria for smouldering myeloma. As previously described in myeloma, both DIS3 mutants occurred in patients with a del(13q). Finally, there was no APOBEC signature in our small samples cohort butwe identified an unspecific mutational signature that was related to age. When comparing the spectrum of mutated genes in both amyloidosis (n=27) and previously sequenced myeloma samples (n=463), we identified 948 genes in common between myeloma and amyloidosis. Four hundred and forty two genes were only mutated in amyloidosis most of them being in housekeeping genes. The clustering of the most frequent and significantly mutated genes in each B-cell malignancy, suggests amyloidosis resembles myeloma and MGUS more than other B-cell malignancies. Discussion: The mutational landscape of amyloidosis resembles myeloma with no disease defining mutations but a variety of mutations occurring in different pathways such as RAS and NF-kB. Two samples had an NRAS mutation, which is a known driver mutation also found in MM. We identified a non-canonical IgH translocation that is a rare event in myeloma. There was little overlap in mutated genes indicating a diverse spectrum of mutations, which is in common with MM. Given the diverse mutational spectrum it will be necessary to study a large cohort to fully understand the genetic complexity of the disease. Conclusion: We conclude that exome sequencing identifies a genetic signature of AL amyloidosis which is similar to other plasma cell disorders in terms of translocations and non-synonymous mutations. Disclosures Walker: Onyx Pharmaceuticals: Consultancy, Honoraria.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 464-464
Author(s):  
Davide Rossi ◽  
Alessio Bruscaggin ◽  
Valeria Spina ◽  
Silvia Rasi ◽  
Hossein Khiabanian ◽  
...  

Abstract Abstract 464 Fludarabine-refractoriness of chronic lymphocytic leukemia (CLL) is due to TP53 disruption in ∼40% of refractory cases, but in a sizeable fraction of patients the molecular basis of this aggressive clinical phenotype remains unclear. Our initial findings from whole exome sequencing of fludarabine-refractory CLL led to the identification of recurrent mutations of SF3B1, a critical component of the cell spliceosome, prompting further investigations of these alterations in a large CLL panel. The study population comprised 3 clinical cohorts representative of: i) fludarabine-refractory CLL (n=59), including cases (n=11) subjected to whole exome sequencing; ii) newly diagnosed and previously untreated CLL (n=301); and iii) clonally related RS (n=33). Tumor samples were obtained: i) for fludarabine-refractory CLL, immediately before starting the treatment to which the patient eventually failed to respond; ii) for newly diagnosed and previously untreated CLL, at disease presentation. All RS studies were performed on RS diagnostic biopsies. Mutation analysis of SF3B1 was performed on genomic DNA by a combination of Sanger sequencing and targeted next generation sequencing. SF3B1 was altered in 10/59 (17%) fludarabine-refractory CLL by missense mutations (n=9) or in-frame deletions (n=1) clustering in the HEAT3, HEAT4 and HEAT5 repeats of the SF3B1 protein. Two sites that are highly conserved inter-species (codon 662 and codon 700) were recurrently mutated in 3 and 5 cases, respectively. SF3B1 mutations were monoallelic, and were predicted to be functionally significant according to the PolyPhen-2 algorithm. Mutations occurred irrespective of IGHV mutation status, CD38 expression and ZAP70 expression. At the time of fludarabine-refractoriness, SF3B1 mutations were enriched in cases harboring a normal FISH karyotype (p=.008) and distributed in a mutually exclusive fashion with TP53 disruption (mutual information I =0.0609; p=.046). By combining SF3B1 mutations with other genetic lesions enriched in chemorefractory cases (TP53 disruption, NOTCH1 mutations, ATM deletion), fludarabine-refractory CLL appeared to be characterized by multiple molecular alterations that, to some extent, are mutually exclusive. We then compared the prevalence of mutations observed at the time of fludarabine-refractoriness to that observed in other disease phases. At diagnosis, SF3B1 mutations were rare (17/301; 5%), and showed a crude association with short treatment free survival (p<.001) and overall survival (p=.011). Remarkably, 5/17 (29%) CLL mutated at diagnosis were primary fludarabine-refractory patients. In CLL investigated at diagnosis, the hotspot distribution and molecular spectrum of SF3B1 mutations, as well as their mutual relationship with other genetic lesions, were similar to those observed in fludarabine-refractory CLL. SF3B1 mutations were restricted to 2/33 (6.0%) clonally-related RS. Across the different disease phases investigated, mutations were somatically acquired in all cases (n=18) for which germline DNA was available. These data document that mutations of SF3B1, a splicing factor that is a critical component of the spliceosome; i) recurrently associate with fludarabine-refractory CLL; ii) occur at a low rate at CLL presentation; iii) play a minor role in RS transformation, corroborating the notion that CLL histologic shift is molecularly distinct from chemorefractory progression without RS transformation. The identification of SF3B1 mutations points to the involvement of splicing regulation as a novel pathogenetic mechanism in CLL. The pathogenicity of SF3B1 mutations in CLL is strongly supported by clustering of these mutations in evolutionarily conserved hotspots localized within HEAT domains, which are tandemly arranged curlicue-like structures serving as flexible scaffolding on which other components can assemble. Also, the observation that SF3B1 regulates the alternative splicing program of genes controlling cell cycle progression and apoptosis points to a potential contribution of SF3B1 mutations in modulating tumor cell proliferation and survival. In addition to pathogenetic implications, SF3B1 mutations might also provide a therapeutic target for SF3B1 inhibitors, that are currently under pre-clinical development as anti-cancer drugs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2698-2698
Author(s):  
Nerea Martinez ◽  
Ignacio Varela ◽  
Jose P. Vaque ◽  
Sophia Derdak ◽  
Sergi Beltran ◽  
...  

Abstract Abstract 2698 Background: Splenic marginal zone lymphoma (SMZL) is a small B cell neoplasm whose molecular pathogenesis is still unknown. It has a relatively indolent course, but a fraction of the cases may show an aggressive behavior. The lack of comprehensive molecular analysis for SMZL precludes the development of targeted therapy. Here we studied the mutational status of 6 SMZL samples using Whole Exome Next Generation Sequencing. Methods: Genomic DNA was extracted from splenic tumor or peripheral blood samples and oral mucosa as the corresponding non-tumor control. Whole exome sequencing was performed at CNAG (Barcelona, Spain) following standard protocols for high-throughput paired-end sequencing on the Illumina HiSeq2000 instruments (Illumina Inc., San Diego, CA). The variant calling was performed using an in house written software calling potential mutations showing a minimum independent multi-aligner evidence. Results: We performed paired-end-76pb whole exome sequencing on 6 SMZL samples and the corresponding normal counterpart. Three of the samples corresponded to CD19 isolated cells from peripheral blood, while other three corresponded to spleen freshly frozen tissue. The mean coverage obtained was 104.07 (82.46–119.59) with a mean of 91.41% (90.41–93.73) of bases with at least 15× coverage. After filtering, 237 substitutions and 21 indels where obtained. No recurrent variation was found. Six of the variations found here were already described in other malignancies. Variations were classified into silent (75), missense (147), nonsense (8), and essential splice (5), according to their potential functional effect, and into tolerated (54) and deleterious (76) according to the “variant effect predictor” tool of Ensembl Genome Browser. Whole exome sequencing permitted us to identify variations in several genes of TLR/NFkB pathway (Myd88, Peli3), BCR (Myd88, Arid3A) or signal transduction (ARHGAP32), essential pathways for B-cell differentiation. These variations and other involving selected genes, such as the Bcl6 repressor BCOR, were validated by capillary sequencing. These results were confirmed and expanded in a second series of 10 new cases by exome sequencing. Conclusions: SMZL samples contain somatic mutation involving genes regulating BCR signaling, TLR/NFKB pathways and chromatin remodeling. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1448-1448
Author(s):  
Nerea Martinez ◽  
Carmen Almaraz ◽  
Manuela Mollejo ◽  
Yolanda Campos-Martin ◽  
Sophia Derdak ◽  
...  

Abstract Background: Splenic diffuse red pulp lymphoma (SDRPL) is a rare small B cell neoplasm provisionally included in a category of unclassifiable splenic B-cell lymphoma/leukemias in the 2008 WHO classification. SDRPL is characterized by a diffuse pattern of involvement of the splenic red pulp by small monomorphous B lymphocytes. Patients are normally diagnosed at stage IV when spleen, bone marrow and peripheral blood are involved. This indolent but incurable disease is more common in aged males and it shows with splenomegaly and moderate lymphocytosis. The differential diagnosis with other splenic lymphomas such as marginal zone lymphoma, hairy cell lymphoma and its variant is not always easy, due to the similar clinical presentation and the absence of specific molecular markers. Here we studied the mutational status of 15 SDRPL patients using Whole Exome Next Generation Sequencing. Methods: Genomic DNA was extracted from FFPE/FF splenic tumor or bone marrow samples. When available, DNA from oral mucosa was obtained as the corresponding non-tumor control. Whole exome sequencing was performed at CNAG (Barcelona, Spain) following standard protocols for high-throughput paired-end sequencing on the Illumina HiSeq2000 instruments (Illumina Inc., San Diego, CA). Validation of variants was performed by PCR based targeted resequencing using a MiSeq instrument (Illumina Inc., San Diego, CA). We performed paired-end-76pb whole exome sequencing on DNA from 15 SDRPL patients. The corresponding normal counterpart from 3 of the patients was sequenced. From one patient FFPE and bone marrow DNA was available for comparison. In total 9 FFPE tissue samples, 3 FF tissue samples, and 4 bone marrow samples were sequenced. Almost 95% of the selected variants were validated by PCR based resequencing in 9 of the patients, while from 6 of the patients no tissue was available for validation. Results: 290 substitutions and 26 indels were obtained after filtering. Whole exome sequencing permitted us to identify variations in several genes of relevant pathways in lymphomas, such as NFkB pathway (IkBKB, TRAF, TANK, SYK), Apoptosis (BAD, DCPS, BCLAF1), MAPK (CXCR4, TCF3, NF1, MAP3K5), Cell cycle (CCND3, POLD3, BUB1), Chromatin (CREBBP, ARID1A, ARID1B, ARID3A, MLL3), MYC regulators (AKAP10, CTCF, EP400) or WNT signaling (SALL1, WNT5B, GPC6). Moreover, CCND3 and MLL3 were recurrently mutated in 2 different patients. Genes specifically found mutated in other splenic malignancies, such as NOTCH2, BRAF, MAP2K1, and KLF2 were not found mutated in this series of SDRPL patients. Conclusions: SDRPL samples contain somatic mutations involving genes regulating relevant pathways for cell survival, such as NFkB, apoptosis, cell cycle, chromatin, or WNT. The mutational signature of the series studied here may indicate that SDRPL is a distinct entity with specific molecular features different to other lymphoid splenic malignancies. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 125 ◽  
pp. e424-e428 ◽  
Author(s):  
Junlong Sun ◽  
Wenwu Zhou ◽  
Kangcheng Mao ◽  
Yunfeng He ◽  
Junzhong Yao ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5651-5651
Author(s):  
Dean Bryant ◽  
Will Tapper ◽  
Nicola J Weston-Bell ◽  
Arnold Bolomsky ◽  
Li Song ◽  
...  

Abstract Introduction Multiple myeloma (MM) is a largely incurable plasma cell malignancy characterised by marked genomic heterogeneity, in which chromosome 1q21 amplification (amp1q21) associates with poor prognosis. Genomic analysis using next generation sequencing has identified recurrent mutations, but no universal acquired somatic mutation(s) have emerged in MM, suggesting that understanding pathways of survival will require analysis of individual tumours in distinct disease subsets. To compound complexity of the problem, intraclonal variation (ICV), known as a major driver mechanism in cancer plasticity, in which clonal competitor cells undergo selection during disease evolution and progression by Darwinian principles, will need to be fully mapped at the genome level. Identifying the true level of ICV in a tumour will thus require analysis at the level of whole exome sequencing (WES) in single cells (SCs). In this study, we sought to establish WES methodology able to identify ICV in SCs in an index case of amp1q21 MM. Methods Cell selection and sequencing CD138+ tumour cells and CD3+ T-cells were isolated from a presentation case of amp1q21 MM as bulk populations to high purity (>97%). Single MM cells and normal T cells were individually isolated and used for single cell (SC) whole exome sequencing (WES). Whole genome amplification (WGA) was performed by multiple displacement amplification (Qiagen REPLI-g Mini kit), and exome capture was performed using Agilent SureSelect. Libraries were then 90 bp paired end sequenced on an Illumina HiSeq2000 (BGI, China). Data analysis Data was produced for bulk (1000 cells) MM and bulk germline T cells, twenty MM SCs and five T cell SCs. Raw data was aligned to hg19 reference sequence using NovoAlignMPI (v3.02.03). Variant calling was performed using SAMtools (v1.2.1) and VarScan (v2.3.6) and variants were annotated using ANNOVAR. High confidence variants were called in the bulk tumour WES by pairwise comparison with bulk germline WES. Variant lists were also cross-searched against various variant databases (CG46, 1000 genomes, dbSNP, esp650 and in-house database) in order to exclude variants that occur in the general population. Multiple quality control measures were employed to reduce the number of false positive calls. Results and Discussion Data and bioinformatics pipelines are of a high quality SC WES generated raw data reads that were similar to bulk WES of 1000 cells, with comparable mapping to Agilent SureSelect target exome (69-76% SC vs. 70% bulk) and mean fold coverage (56.8-59.1x vs. 59.7x bulk). On average, 82% of the exome was covered sufficiently for somatic variant (SV) calling (often considered as ≥ 5x), which was higher than seminal published SC WES studies (70-80%) (Hou et al., Cell, 2012; Xu et al., Cell, 2012). We identified 33 potentially deleterious SVs in the bulk tumour exome with high confidence bioinformatics, 21 of which were also identified in one or more SC exomes. The variants identified include suspected deleterious mutations in genes involved in MAPK pathway, plasma cell differentiation, and those with known roles in B cell malignancies. To confirm SV calls, randomly selected variants were validated by conventional Sanger sequencing, and of 15/15 variants in the bulk WES and of 55/55 variants in SCs, to obtain 100% concordance. Intraclonal variation in MM Significantly, ICV was apparent from the SC exome variant data. Total variant counts varied considerably among SCs and most variant positions had at least several cells where no evidence of the variant existed. Bulk WES lacks crucial information We identified an additional 23 variants that were present in 2+ SC exomes, but absent in the bulk MM tumour exomes. Of these, 30% (7 variants) were examined for validation, and were amplifiable in at least one cell to deliver 100% concordance with variant calls. These variants are of significant interest as they reveal a marked occurrence of subclonal mutations in the MM tumour population that are not identified by bulk exome sequencing. They indicate that the mutational status of the MM genome may be substantially underestimated by analysis at the bulk tumour population level. Conclusion In this work we establish the feasibility of SC WES as a method for defining intraclonal genetic variation in MM. Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 134 (1) ◽  
pp. 213-220 ◽  
Author(s):  
Shyam S. Jayaraman ◽  
David J. Rayhan ◽  
Salar Hazany ◽  
Michael S. Kolodney

Sign in / Sign up

Export Citation Format

Share Document