scholarly journals ACE910 Facilitates Its Hemostatic Effect with the Lower Concentration of Factor X Than That Required for Factor VIIa-Driven Coagulation

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1077-1077 ◽  
Author(s):  
Koji Yada ◽  
Keiji Nogami ◽  
Takehisa Kitazawa ◽  
Kunihiro Hattori ◽  
Midori Shima

Abstract The hemostatic effect of bypassing agents such as recombinant (r) factor (F)VIIa and activated prothrombin complex concentrates (aPCC) for hemophilia A with inhibitors (HA-inh) is not always stable (Berntope, Haemophilia 2009). The mechanism(s) of its instability remain unclear, however. We have recently reported the HA-inh case showing the attenuated responsiveness to aPCC (Ogiwara, Int J Hematol. 2014). Some groups reported the hemostatic effects of the complex concentrates of FVIIa and FX (Shirahata, Haemophilia 2012) in HA-inh, suggesting that FX would play the key role in the hemostatic effect by FVIIa. ACE910, a humanized bispecific antibody to FIXa and FX mimicking the functions of FVIIIa, exerting FXase activities without FVIII(a) (Kitazawa, Nature Medicine 2012). In this study, we attempted to elucidate the dependency on FX of the FVIIa- and/or ACE910-driven coagulation. Firstly, the global hemostatic potentials in the whole blood samples obtained from the four HA-inh cases (Case 1, 2, 3 and 4) under perioperative hemostatic treatment with the intermittent administration of rFVIIa every 2-3hr were evaluated by Ca2+-triggered viscoelastometric assay with ROTEM. The first infusion of rFVIIa shortened CT (from 5,087 ± 1,261 to 1,157 ± 208 sec) and increased MCF (from 17 ± 8.7 to 58.8 ± 1.3 mm) in each case. Additional rFVIIa after the 7th administration in Case 1, the 13th in Case 2 and the 12th in Case 3 little affected CT and MCF as well as clinical symptom, indicative of poor responsiveness, while Case 4 showed the improvement of the parameters even after the frequent infusion of rFVIIa, identified as a responsive case. Thrombin generation (TG) triggered by TF (1pM) or TF (1pM) together with ellagic acid (0.3μM) was evaluated in the plasma from the cases with poor response. Peak thrombin (PeakTh) was little changed between pre- and post-additional infusion of rFVIIa in the cases with poor response, similar to the pattern of ROTEM. The level of FX antigen measured by an ELISA in the plasma was 90.5 ± 9.6 nM, showing 67% of normal control (~140 nM), of little difference among the four cases at the first administration of rFVIIa, while that in Case 1, 2 or 3 at the 7th, 13th or 12th administration, respectively, decreased to 39.1 ± 7.0 nM, equivalent to ~45% of that (86.8 ± 12.9 nM) kept in the responsive Case 4. Addition of FX (300nM) in the plasma of poor response to rFVIIa ex vivo increased PeakTh to ~80% of normal control, suggesting that FVIIa-driven hemostatic effect would be dependent upon FX. Furthermore, to investigate the FX-dependency of FVIIa- and ACE910-driven coagulation, TG in the reconstituted HA-inh model plasmas consisting of FX-deficient plasma in which FVIII was inactivated by an anti-FVIII polyclonal antibody (10BU/ml) with/without rFVIIa (50 and 150 nM) or ACE910 (10, 30 and 60 μg/ml) was evaluated in the presence of various concentrations of FX (f.c. 0 - 300 nM). The control experiment without rFVIIa or ACE910 showed the FX dose-dependent increase of PeakTh. In the plasmas with FX ranged from 50 to 300nM, PeakTh improved to almost normal level by rFVIIa as well as ACE910. Of note, with the lower concentration of FX (10-20 nM), PeakTh improved to almost normal level in the presence of ACE910, increased by 38 ± 2.4%, 45 ± 1.7% and 48 ± 0.8% compared to those in its absence, respectively, in an ACE910 dose-dependent manner, whilst the presence of rFVIIa little affected TG compared to those in its absence. Taken together, ACE910 could exert its hemostatic effect with the lower amount of FX than that required for the rFVIIa-driven coagulation. Disclosures Yada: Chugai Pharmaceutical Co., ltd: Research Funding. Nogami:Bayer, NovoNordisk, Baxalta, Chugai, Kaketsuken, Pfizer, Biogen: Honoraria; Bayer, Novo Nordisk, Baxalta. Biogen: Research Funding; Chugai: Membership on an entity's Board of Directors or advisory committees. Kitazawa:Chugai Pharmaceutical Co., Ltd: Employment, Equity Ownership, Patents & Royalties. Hattori:Chugai Pharmaceutical Co., Ltd: Employment, Equity Ownership, Patents & Royalties. Shima:Biogen: Honoraria, Research Funding; Bayer: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding; Chugai Pharmaceutical Co., Ltd: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Baxalta: Honoraria, Research Funding; Novo Nordisk: Honoraria, Research Funding; Kaketsuken: Honoraria.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1388-1388 ◽  
Author(s):  
Keiji Nogami ◽  
Tomoko Matsumoto ◽  
Yuka Tabuchi ◽  
Tetsuhiro Soeda ◽  
Nobuo Arai ◽  
...  

Abstract Emicizumab (also termed ACE910) is a humanized anti-factor (F)IXa/FX bispecific antibody with FVIIIa cofactor function. A clinical phase 3 study was initiated in 2015 for hemophilia A patients (HA-pts) with FVIII inhibitors. Since emicizumab, unlike FVIII, does not require activation by thrombin, its APTT-shortening effect is much greater than that of FVIII. Thus, APTT, a conventional assay to assess whole coagulation potency, would have limited utility in emicizumab-administered HA-pts, because emicizumab would mask the effect of residual FVIII or a FVIII agent on APTT. Clot waveform analysis (CWA) can provide multidimensional coagulation potencies by monitoring the process of plasma clot formation with an automated coagulation analyzer. We considered the possibility, therefore, that this assay system would overcome the above issue on APTT. In this study, we aimed to optimize concentrations of tissue factor (TF) and ellagic acid (Elg) in a trigger reagent for CWA as well as CWA parameters to provide precise evaluation of coagulation potency even in the presence of emicizumab with neither masking nor being masked by FVIII or bypassing agents. First, we determined an optimal concentration of TF/Elg trigger reagent. Various concentrations (10, 30, 100, and 300 μg/mL) of emicizumab were spiked into commercially available FVIII-deficient plasmas (George King) for testing. Recombinant (r)FVIII (Kogenate FS; Bayer)-spiked samples were also tested as a reference. PT reagent (under development; Sysmex) and APTT reagent (Thrombocheck APTT-SLA; Sysmex), used as a source of TF and Elg, respectively, were mixed in various ratios. The optimized mixture ratio (PT:APTT:buffer=1:15:135) was chosen to ensure that the maximum coagulation velocity (|min1|) in the presence of emicizumab would be in agreement with the animal study-based estimated conversion rate "0.2-0.4 IU/dL of equivalent FVIII per 1 μg/mL of emicizumab" (Muto. J Thromb Haemost. 2014). When evaluating several lots of FVIII-deficient plasmas, however, we observed large variations in transmittance depending on fibrinogen concentration of each plasma, which resulted in large variations of |min1| between donor plasmas. To decrease the bias due to fibrinogen concentration, % transmittance of clot waveform (CW) was adjusted to 100% and 0% at the pre- and post-coagulation phase, respectively. By using |min1| from the adjusted CW (adjusted-|min1|), we successfully reduced the inter-donor variations and chose it as a main parameter. Next, we evaluated adjusted-|min1| using plasmas from HA-pts without inhibitors (severe; n=2, moderate; n=2) and HA-pts with inhibitors (<10 BU/mL; n=2, >10 BU/mL; n=2) by adding emicizumab (30, 100, and 300 μg/mL) in vitro. After the addition of emicizumab, concentration-dependent increases in adjusted-|min1| were observed in all plasmas with rather small individual variations. Finally, we examined whether adjusted-|min1| reflected the effects of FVIII or bypassing agent that was added to plasmas containing emicizumab. Additive effects of a plasma-derived FVIII agent (CROSS EIGHT M; Japan Blood Products Organization), a rFVIII agent (ADVATE; Baxalta) and activated prothrombin complex concentrate (FEIBA; Baxalta) were confirmed by the increase of adjusted-|min1|. As for rFVIIa agent (NovoSeven; Novo Nordisk), its additive effect on adjusted-|min1| was not clear enough in this assay condition, but its additive effects were confirmed by the clot time. In conclusion, we established the Elg/TF-triggered CWA assay condition and parameters for measuring coagulation potency in plasmas from HA-pts even in the presence of emicizumab and a FVIII/bypassing agent without masking each other. Disclosures Nogami: Sysmex Corporation: Patents & Royalties, Research Funding; Chugai Pharmaceutical Co., Ltd.: Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; F. Hoffmann-La Roche Ltd.: Honoraria, Membership on an entity's Board of Directors or advisory committees. Matsumoto:Sysmex Corporation: Patents & Royalties, Research Funding; Chugai Pharmaceutical Co., Ltd.: Patents & Royalties, Research Funding. Tabuchi:Sysmex Corporation: Employment, Patents & Royalties; Chugai Pharmaceutical Co., Ltd.: Patents & Royalties. Soeda:Sysmex Corporation: Patents & Royalties; Chugai Pharmaceutical Co., Ltd.: Employment, Patents & Royalties. Arai:Sysmex Corporation: Employment. Kitazawa:Chugai Pharmaceutical Co.: Employment, Equity Ownership, Patents & Royalties; Sysmex Corporation: Patents & Royalties. Takaoka:Sysmex Corporation: Employment. Hattori:Chugai Pharmaceutical Co.: Employment, Equity Ownership, Patents & Royalties. Shima:F. Hoffmann-La Roche Ltd.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Chugai Pharmaceutical Co., Ltd.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; Sysmex Corporation: Patents & Royalties, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1812-1812 ◽  
Author(s):  
Stephen Ansell ◽  
Robert W Chen ◽  
Ian W. Flinn ◽  
Michael B. Maris ◽  
Owen A. O'Connor ◽  
...  

Abstract Introduction The phagocytic activity of macrophages is regulated by activating ("eat") and inhibitory ("do not eat") signals. Under normal physiologic conditions, the ubiquitously expressed cell surface antigen CD47 suppresses phagocytosis by binding to signal regulatory protein alpha (SIRPα) on macrophages. It is hypothesized that overexpression of CD47 by cancer cells enables immune evasion. Blockade of CD47 results in phagocytosis of cells bearing "eat" signals and primes effective anti-tumor T cell responses. TTI-621(SIRPαFc)is a soluble recombinant fusion proteinconsisting of the CD47 binding domain of human SIRPα linked to the Fc region of human IgG1designed to both: 1) block the CD47 "do not eat" signal, and 2) engagemacrophage Fcγ receptors with IgG1 Fc to enhance phagocytosis and antitumor activity.In vitro, TTI-621 binds to normal human cells, platelets, a wide range of human primary tumor cells and cell lines, but only minimally to human erythrocytes. TTI-621 selectively promotes macrophage-mediated phagocytosis of hematologic and solid tumors over that observed with normal monocytes, and exhibits antitumor activity in xenograft mouse models. Methods A first-in-human, phase 1, open label, multicenter study (NCT02663518) is ongoing to evaluate the safety and tolerability, and to identify the maximum tolerated dose of TTI-621 in patients (pts) with relapsed/refractory lymphomas using a 3+3 dose-escalation design. Once the optimal dose has been determined in the dose-escalation phase, multiple expansion cohorts will be enrolled comprising pts with various relapsed/refractory hematologic malignancies. Assessments include peripheral receptor occupancy, serum cytokine levels, pharmacokinetics, and immunogenicity. Eligible pts are adults with advanced, measurable, hematologic malignancies, who have progressed on standard anticancer therapy or for whom no other approved therapy exists. Pts are required to have baseline hemoglobin ≥10 g/dL, platelets ≥75 x 109/L, and be transfusion- and growth factor-independent. Pts with cutaneous T-cell lymphoma, high-grade lymphoma, and acute promyelocytic leukemia are excluded. TTI-621 is administered IV once weekly at protocol-defined doses. Treatment may continue until disease progression or unacceptable toxicity. Results Eleven pts (6M/5F, age 21-72 years) have been enrolled as of the data cut-off date of 28 July 2016. Lymphoma diagnoses included Hodgkin (N=4), diffuse large B cell (DLBCL) (N=4), follicular (N=2), and mantle cell (N=1). Treatment has been reasonably well tolerated by pts in the 0.05 mg/kg (N=3), 0.1 mg/kg (N=3), and 0.3 mg/kg (N=5) dose cohorts. The majority of pts experienced mild to moderate infusion-related events. Hemoglobin levels have remained stable or improved with treatment. Transient, dose-dependent decreases in platelets and leukocytes occurred in the hours following infusion in all pts without clinical sequelae. The 0.3 mg/kg dose was associated with reversible, dose-limiting toxicity (DLT) in 2 of 5 pts: one pt with G3 elevated ALT/AST and G4 platelet count, and a second pt with G4 platelet count who was transfused. Dosing at 0.2 mg/kg is now being explored. Aside from the DLTs and 2 non-DLT G3 platelet count (all in 0.3 mg/kg cohort), treatment-related adverse events have been ≤G2. CD47 receptor occupancy increased with each cohort, peaking at the end of infusion and remaining detectable 24 hrs after the 1st infusion in Cohort 3. Macrophage-associated cytokines, including MIP-1α and MIP-1β, increased during the 4 hrs after infusion. Six pts continue to receive weekly infusions of TTI-621; one pt with DLBCL and another with FL have experienced progression-free intervals of 161 and 70 days, respectively. Conclusions TTI-621 has been reasonably well tolerated. Pts retained stable hemoglobin levels consistent with minimal drug binding to erythrocytes. Manageable, dose-dependent thrombocytopenia was likely due to increased phagocytic clearance of platelets. TTI-621 binds to CD47+ cells in a dose-dependent manner, potently yielding increases in cytokines associated with augmented phagocytic activity. Enrollment continues at the 0.2 mg/kg dose level; updated data will be provided at the meeting. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures Ansell: BMS, Seattle Genetics, Merck, Celldex and Affimed: Research Funding. Chen:Seattle Genetics: Consultancy, Honoraria, Research Funding, Speakers Bureau; Millenium: Consultancy, Research Funding, Speakers Bureau; Genentech: Consultancy, Speakers Bureau; Merck: Consultancy, Research Funding. Flinn:Janssen: Research Funding; Pharmacyclics LLC, an AbbVie Company: Research Funding; Gilead Sciences: Research Funding; ARIAD: Research Funding; RainTree Oncology Services: Equity Ownership. O'Connor:Bristol Myers Squibb: Research Funding; Spectrum: Research Funding; TG Therapeutics: Research Funding; Mundipharma: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Seattle Genetics: Research Funding; Bristol Myers Squibb: Research Funding; Mundipharma: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; TG Therapeutics: Research Funding. Johnson:Trillium Therapeutics: Employment. Irwin:Hoffmann La Roche: Employment, Equity Ownership; Trillium Therapeutics: Employment, Equity Ownership. Petrova:Trillium Therapeutics Inc: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Uger:Trillium Therapeutics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Sievers:Seattle Genetics: Employment, Equity Ownership; Trillium Therapeutics: Employment, Equity Ownership; MEI Pharma: Consultancy.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1209-1209 ◽  
Author(s):  
Saskia Langemeijer ◽  
Jun-Ichi Nishimura ◽  
Wynne Weston-Davies ◽  
Miles A Nunn ◽  
Yuzuru Kanakura ◽  
...  

Abstract Eculizumab (Soliris®) is a humanized monoclonal antibody that targets complement factor C5and inhibits the production of C5a and formation of the terminal complement membrane attack complex. It is registered for the treatment of PNH and aHUS. Eculizumab results in significant reduction of hemolysis in PNH, improves symptoms and reduces the incidence of PNH related thrombosis . A poor response, defined as sustained high levels of LDH during treatment with eculizumab irrespective of improvement of clinical symptoms, has been reported in a subgroup of PNH patients (Nishimura et al, NEJM 2014;370:632-639). These patients had a genetic variant of C5 which occurs in approximately 3.5% of the Japanese and 1% of the Chinese Han populations and interferes with binding of eculizumab to C5. We describe the first patient with no known Asian ancestry with a poor response to eculizumab, who subsequently had a good in vitro response to protein rEV576 (syntheticOrnithodoros moubata complement C5 binding) or coversin. Coversin is a recombinant small protein derived from a tick salivary molecule which binds to C5 and, through steric hindrance, interferes with the access of C5 convertase to the active site and thus prevents cleavage to C5a and C5b in a similar fashion to eculizumab. Our 30-year old male patient commenced treatment with Eculizumab because of PNH (granulocyte clone size: 90%), severe haemolysis (LDH 3-6x ULN, and peak value of 17xULN), transient renal failure, extreme fatigue and erectile dysfunction. He had no history of thrombosis and no underlying bone marrow disease. During eculizumab treatment (dosed 600 mg iv every 7 days, weeks 1-4 and 900 mg biweekly starting in week 5) he felt better, seemed less fatigued and experienced less erectile dysfunction. However, laboratory examination showed sustained elevated markers of hemolysis. Other causes of hemolysis were excluded. Underdosing of eculizumab was ruled out by demonstrating sustained high LDH levels at different time points in between subsequent eculizumab infusions and by measuring trough levels of eculizumab (>100ug/ml). In vitro terminal complement complex blockage by eculizumab through antibody-coated chicken red blood cell lysis was indicative of ongoing active hemolysis in our patient's serum. The presence of Human Anti-Drug Antibodies was excluded using an illuminescent MSD®assay. Treatment was discontinued when the patient experienced increased hemolysis (LDH 9x ULN) and macroscopic hemoglobinuria one day after receiving a dose of 900 mg eculizumab. As expected, discontinuation did not result in further increase of hemolysis parameters or clinical change. To investigate whether a mutation of complement C5 might explain the eculizumab resistance in our patient, DNA analysis of the coding region of C5 was performed. This showed a single C5 heterozygous missense mutation, c.2653C>A, which predicts p.Arg885Ser. This new mutation was very similar to variants previously found in Japanese patients (c.2654G>A, which predicts p.Arg885His) and an Argentinian patient with Asian ancestry (c.2653C>T, which predicts p.Arg885Cys), indicating the importance of this amino acid in C5 recognition by eculizumab. The same mutation was demonstrated in the DNA of our patient's healthy father. Since coversin binds to an epitope on C5 remote from the eculizumab binding site, we hypothesised that it might block C5 cleavage in our patient. Serum samples from our patient and 6 healthy controls were spiked with ascending doses of either eculizumab or coversin and complement activity was measured using a commercially available CH50 Equivalent ELISA (Quidel Corporation ®). In agreement with our in vivo observation eculizumab was incapable of inhibiting CH50 activity in the patient's serum beyond approximately 75%, even at concentrations of 100ug/ml. In contrast coversin, even in concentrations of 10 ug/ml inhibited complement activity completely, both in serum of our patient and serum of healthy controls. We conclude that coversin may prove a useful alternative to eculizumab for patients with resistance due to C5 polymorphisms. Figure 1. Change in serum complement C5 activity in response to ascending doses of coversin (Cov) and eculizumab (Ecu). R2 = patient sample, NC3 = normal control Figure 1. Change in serum complement C5 activity in response to ascending doses of coversin (Cov) and eculizumab (Ecu). R2 = patient sample, NC3 = normal control Disclosures Nishimura: Alexion Pharma: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Weston-Davies:Volution Immuno Pharmaceuticals: Employment, Equity Ownership. Nunn:Volution Immuno Pharmaceuticals: Employment, Equity Ownership. Kanakura:Alexion Pharma: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Mackie:Volution Immuno Pharmaceuticals (Uk) Ltd: Research Funding. Muus:Alexion Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1961-1961
Author(s):  
John F. DiPersio ◽  
Jonathan Hoggatt ◽  
Steven Devine ◽  
Lukasz Biernat ◽  
Haley Howell ◽  
...  

Background Granulocyte colony-stimulating factor (G-CSF) is the standard of care for mobilization of hematopoietic stem cells (HSCs). G-CSF requires 4-7 days of injections and often multiple aphereses to acquire sufficient CD34+ cells for transplant. The number of CD34+ HSCs mobilized can be variable and patients who fail to mobilize enough CD34+ cells are treated with the combination of G-CSF plus plerixafor. G-CSF use is associated with bone pain, nausea, headaches, fatigue, rare episodes of splenic rupture, and is contraindicated for patients with autoimmune and sickle cell disease. MGTA-145 (GroβT) is a CXCR2 agonist. MGTA-145, in combination with plerixafor, a CXCR4 inhibitor, has the potential to rapidly and reliably mobilize robust numbers of HSCs with a single dose and same-day apheresis for transplant that is free from G-CSF. MGTA-145 plus plerixafor work synergistically to rapidly mobilize HSCs in both mice and non-human primates (Hoggatt, Cell 2018; Goncalves, Blood 2018). Based on these data, Magenta initiated a Phase 1 dose-escalating study to evaluate the safety, PK and PD of MGTA-145 as a single agent and in combination with plerixafor. Methods This study consists of four parts. In Part A, healthy volunteers were dosed with MGTA-145 (0.0075 - 0.3 mg/kg) or placebo. In Part B, MGTA-145 dose levels from Part A were selected for use in combination with a clinically approved dose of plerixafor. In Part C, a single dose MGTA-145 plus plerixafor will be administered on day 1 and day 2. In Part D, MGTA-145 plus plerixafor will be administered followed by apheresis. Results MGTA-145 monotherapy was well tolerated in all subjects dosed (Table 1) with no significant adverse events. Some subjects experienced mild (Grade 1) transient lower back pain that dissipated within minutes. In the ongoing study, the combination of MGTA-145 with plerixafor was well tolerated, with some donors experiencing Grade 1 and 2 gastrointestinal adverse events commonly observed with plerixafor alone. Pharmacokinetic (PK) exposure and maximum plasma concentrations increased dose proportionally and were not affected by plerixafor (Fig 1A). Monotherapy of MGTA-145 resulted in an immediate increase in neutrophils (Fig 1B) and release of plasma MMP-9 (Fig 1C). Neutrophil mobilization plateaued within 1-hour post MGTA-145 at doses greater than 0.03 mg/kg. This plateau was followed by a rebound of neutrophil mobilization which correlated with re-expression of CXCR2 and presence of MGTA-145 at pharmacologically active levels. Markers of neutrophil activation were relatively unchanged (<2-fold vs baseline). A rapid and statistically significant increase in CD34+ cells occurred @ 0.03 and 0.075 mg/kg of MGTA-145 (p < 0.01) relative to placebo with peak mobilization (Fig 1D) 30 minutes post MGTA-145 (7-fold above baseline @ 0.03 mg/kg). To date, the combination of MGTA-145 plus plerixafor mobilized >20/µl CD34s in 92% (11/12) subjects compared to 50% (2/4) subjects receiving plerixafor alone. Preliminary data show that there was a significant increase in fold change relative to baseline in CD34+ cells (27x vs 13x) and phenotypic CD34+CD90+CD45RA- HSCs (38x vs 22x) mobilized by MGTA-145 with plerixafor. Mobilized CD34+ cells were detectable at 15 minutes with peak mobilization shifted 2 - 4 hours earlier for the combination vs plerixafor alone (4 - 6h vs 8 - 12h). Detailed results of single dose administration of MGTA-145 and plerixafor given on one day as well as also on two sequential days will be presented along with fully characterized graft analysis post apheresis from subjects given MGTA-145 and plerixafor. Conclusions MGTA-145 is safe and well tolerated, as a monotherapy and in combination with plerixafor and induced rapid and robust mobilization of significant numbers of HSCs with a single dose in all subjects to date. Kinetics of CD34+ cell mobilization for the combination was immediate (4x increase vs no change for plerixafor alone @ 15 min) suggesting the mechanism of action of MGTA-145 plus plerixafor is different from plerixafor alone. Preliminary data demonstrate that MGTA-145 when combined with plerixafor results in a significant increase in CD34+ fold change relative to plerixafor alone. Magenta Therapeutics intends to develop MGTA-145 as a first line mobilization product for blood cancers, autoimmune and genetic diseases and plans a Phase 2 study in multiple myeloma and non-Hodgkin lymphoma in 2020. Disclosures DiPersio: Magenta Therapeutics: Equity Ownership; NeoImmune Tech: Research Funding; Cellworks Group, Inc.: Membership on an entity's Board of Directors or advisory committees; Karyopharm Therapeutics: Consultancy; Incyte: Consultancy, Research Funding; RiverVest Venture Partners Arch Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees; WUGEN: Equity Ownership, Patents & Royalties, Research Funding; Macrogenics: Research Funding, Speakers Bureau; Bioline Rx: Research Funding, Speakers Bureau; Celgene: Consultancy; Amphivena Therapeutics: Consultancy, Research Funding. Hoggatt:Magenta Therapeutics: Consultancy, Equity Ownership, Research Funding. Devine:Kiadis Pharma: Other: Protocol development (via institution); Bristol Myers: Other: Grant for monitoring support & travel support; Magenta Therapeutics: Other: Travel support for advisory board; My employer (National Marrow Donor Program) has equity interest in Magenta. Biernat:Medpace, Inc.: Employment. Howell:Magenta Therapeutics: Employment, Equity Ownership. Schmelmer:Magenta Therapeutics: Employment, Equity Ownership. Neale:Magenta Therapeutics: Employment, Equity Ownership. Boitano:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Cooke:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Goncalves:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Raffel:Magenta Therapeutics: Employment, Equity Ownership. Falahee:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Morrow:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Davis:Magenta Therapeutics: Employment, Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3129-3129
Author(s):  
Hans C. Lee ◽  
Sikander Ailawadhi ◽  
Cristina Gasparetto ◽  
Sundar Jagannath ◽  
Robert M. Rifkin ◽  
...  

Background: Multiple myeloma (MM) is common among the elderly, with 35% of patients (pts) diagnosed being aged ≥75 years (y). With increasing overall life expectancy, the incidence and prevalence of newly diagnosed and previously treated MM patients ≥80 y is expected to increase over time. Because elderly pts are often excluded from clinical trials, data focused on their treatment patterns and clinical outcomes are lacking. The Connect® MM Registry (NCT01081028) is a large, US, multicenter, prospective observational cohort study of pts with newly diagnosed MM (NDMM) designed to examine real-world diagnostic patterns, treatment patterns, clinical outcomes, and health-related quality of life patient-reported outcomes. This analysis reviews treatment patterns and outcomes in elderly pts from the Connect MM Registry. Methods: Pts enrolled in the Connect MM registry at 250 community, academic, and government sites were included in this analysis. Eligible pts were adults aged ≥18 y with symptomatic MM diagnosed ≤2 months before enrollment, as defined by International Myeloma Working Group criteria; no exclusion criteria were applied. For this analysis, pts were categorized into 4 age groups: <65, 65 to 74, 75 to 84, and ≥85 y. Pts were followed from time of enrollment to the earliest of disease progression (or death), loss to follow-up, or data cutoff date of February 7, 2019. Descriptive statistics were used for baseline characteristics and treatment regimens. Survival outcomes were analyzed using Cox regression. Time to progression (TTP) analysis excluded causes of death not related to MM. Results: Of 3011 pts enrolled (median age 67 y), 132 (4%) were aged ≥85 y, and 615 (20%) were aged 75-84 y at baseline. More pts aged ≥85 y had poor prognostic factors such as ISS stage III disease and reduced hemoglobin (<10 g/dL or >2 g/dL <LLN) compared with other age groups, although no notable differences between creatinine and calcium levels were observed across age groups (Table). A lower proportion of elderly pts (75-84 and ≥85 y) received triplet regimens as frontline therapy. More elderly pts received a single novel agent, whereas use of 2 novel agents was more common in younger pts (Table). The most common frontline regimens among elderly pts were bortezomib (V) + dexamethasone (D), followed by lenalidomide (R) + D, whereas those among younger pts included RVD, followed by VD and CyBorD (Table). No pt aged ≥85 y, and 4% of pts aged 75-84 y received high-dose chemotherapy and autologous stem cell transplant (vs 61% in the <65 y and 37% in the 65-74 y age group). The most common maintenance therapy was RD in pts ≥85 y (although the use was low) and R alone in other age groups (Table). In the ≥85 y group, 27%, 10%, and 4% of pts entered 2L, 3L, and 4L treatments respectively, vs 43%, 23%, and 13% in the <65 y group. Progression-free survival was significantly shorter in the ≥85 y age group vs the 75-84 y age group (P=0.003), 65-74 y age group (P<0.001), and <65 y age group (P<0.001; Fig.1). TTP was significantly shorter in the ≥85 y group vs the <65 y group (P=0.020); however, TTP was similar among the 65-74 y, 75-84 y, and ≥85 y cohorts (Fig. 2). Overall survival was significantly shorter in the ≥85 y group vs the 75-84 y, 65-74 y, and <65 y groups (all P<0.001; Fig. 3). The mortality rate was lowest (46%) during first-line treatment (1L) in pts aged ≥85 y (mainly attributed to MM progression) and increased in 2L and 3L (47% and 54%, respectively); a similar trend was observed in the younger age groups. The main cause of death was MM progression (29% in the ≥85 y vs 16% in the <65 y group). Other notable causes of death in the ≥85 y group included cardiac failure (5% vs 2% in <65 y group) and pneumonia (5% vs 1% in <65 y group). Conclusions: In this analysis, elderly pts received similar types of frontline and maintenance regimens as younger pts, although proportions varied with decreased use of triplet regimens with age. Considering similarities in TTP across the 65-74 y, 75-84 y, and ≥85 y cohorts, these real-world data support active treatment and aggressive supportive care of elderly symptomatic pts, including with novel agents. Additionally, further clinical studies specific to elderly patients with MM should be explored. Disclosures Lee: Amgen: Consultancy, Research Funding; GlaxoSmithKline plc: Research Funding; Sanofi: Consultancy; Daiichi Sankyo: Research Funding; Celgene: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding. Ailawadhi:Janssen: Consultancy, Research Funding; Takeda: Consultancy; Pharmacyclics: Research Funding; Amgen: Consultancy, Research Funding; Celgene: Consultancy; Cellectar: Research Funding. Gasparetto:Celgene: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; Janssen: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; BMS: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed . Jagannath:AbbVie: Consultancy; Merck & Co.: Consultancy; Bristol-Myers Squibb: Consultancy; Karyopharm Therapeutics: Consultancy; Celgene Corporation: Consultancy; Janssen Pharmaceuticals: Consultancy. Rifkin:Celgene: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Durie:Amgen, Celgene, Johnson & Johnson, and Takeda: Consultancy. Narang:Celgene: Speakers Bureau. Terebelo:Celgene: Honoraria; Jannsen: Speakers Bureau; Newland Medical Asociates: Employment. Toomey:Celgene: Consultancy. Hardin:Celgene: Membership on an entity's Board of Directors or advisory committees. Wagner:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; American Cancer Society: Other: Section editor, Cancer journal. Omel:Celgene, Takeda, Janssen: Other: Patient Advisory Committees. Srinivasan:Celgene: Employment, Equity Ownership. Liu:TechData: Consultancy. Dhalla:Celgene: Employment. Agarwal:Celgene Corporation: Employment, Equity Ownership. Abonour:BMS: Consultancy; Celgene: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4739-4739
Author(s):  
Pieter Sonneveld ◽  
Maria-Victoria Mateos ◽  
Adrián Alegre ◽  
Thierry Facon ◽  
Cyrille Hulin ◽  
...  

Introduction: For patients with newly diagnosed multiple myeloma (NDMM) who are transplant-eligible, bortezomib/thalidomide/dexamethasone (VTd) is a standard of care (SoC) for induction and consolidation therapy. Clinical practice has evolved to use a modified VTd dose (VTd-mod; 100 mg thalidomide daily), which is reflected in recent treatment guidelines. As VTd-mod has become a real-world SoC, a matching-adjusted indirect comparison (MAIC) of the VTd-mod dose from recent clinical trials versus the dose included in the label (VTd-label; ramp up to 200 mg thalidomide daily) was performed to understand the effect on efficacy of modified VTd dosing for patients with NDMM who are transplant-eligible. Methods: For each outcome (overall survival [OS], progression-free survival [PFS], overall response rates [ORR] post-induction and post-transplant, and rate of peripheral neuropathy), a naïve comparison and a MAIC were performed. Data for VTd-label were obtained from the phase 3 PETHEMA/GEM study (Rosiñol L, et al. Blood. 2012;120[8]:1589-1596). Data for VTd-mod were pooled from the phase 3 CASSIOPEIA study (Moreau P, et al. Lancet. 2019;394[10192]:29-38) and the phase 2 NCT00531453 study (Ludwig H, et al. J Clin Oncol. 2013;31[2]:247-255). Patient-level data for PETHEMA/GEM and CASSIOPEIA were used to generate outcomes of interest and were validated against their respective clinical study reports; aggregate data for NCT00531453 were extracted from the primary publication. Matched baseline characteristics were age, sex, ECOG performance status, myeloma type, International Staging System (ISS) stage, baseline creatinine clearance, hemoglobin level, and platelet count. Results: Patients received VTd-mod (n = 591) or VTd-label (n = 130). After matching, baseline characteristics were similar across groups. For OS, the naïve comparison and the MAIC showed that VTd-mod was non-inferior to VTd-label (MAIC HR, 0.640 [95% CI: 0.363-1.129], P = 0.121; Figure 1A). VTd-mod significantly improved PFS versus VTd-label in the naïve comparison and MAIC (MAIC HR, 0.672 [95% CI: 0.467-0.966], P = 0.031; Figure 1B). Post-induction ORR was non-inferior for VTd-mod versus VTd-label (MAIC odds ratio, 1.781 [95% CI: 1.004-3.16], P = 0.065). Post-transplant, VTd-mod demonstrated superior ORR in both the naïve comparison and MAIC (MAIC odds ratio, 2.661 [95% CI: 1.579-4.484], P = 0.001). For rates of grade 3 or 4 peripheral neuropathy, the naïve comparison and MAIC both demonstrated that VTd-mod was non-inferior to VTd-label (MAIC rate difference, 2.4 [⁻1.7-6.49], P = 0.409). Conclusions: As naïve, indirect comparisons are prone to bias due to patient heterogeneity between studies, a MAIC can provide useful insights for clinicians and reimbursement decision-makers regarding the relative efficacy and safety of different treatments. In this MAIC, non-inferiority of VTd-mod versus VTd-label was demonstrated for OS, post-induction ORR, and peripheral neuropathy. This analysis also showed that VTd-mod significantly improved PFS and ORR post-transplant compared with VTd-label for patients with NDMM who are transplant-eligible. A limitation of this analysis is that unreported or unobserved confounding factors could not be adjusted for. Disclosures Sonneveld: Takeda: Honoraria, Research Funding; SkylineDx: Research Funding; Janssen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; BMS: Honoraria; Amgen: Honoraria, Research Funding; Karyopharm: Honoraria, Research Funding. Mateos:Janssen, Celgene, Takeda, Amgen, Adaptive: Honoraria; AbbVie Inc, Amgen Inc, Celgene Corporation, Genentech, GlaxoSmithKline, Janssen Biotech Inc, Mundipharma EDO, PharmaMar, Roche Laboratories Inc, Takeda Oncology: Other: Advisory Committee; Janssen, Celgene, Takeda, Amgen, GSK, Abbvie, EDO, Pharmar: Membership on an entity's Board of Directors or advisory committees; Amgen Inc, Celgene Corporation, Janssen Biotech Inc, Takeda Oncology.: Speakers Bureau; Amgen Inc, Janssen Biotech Inc: Other: Data and Monitoring Committee. Alegre:Celgene, Amgen, Janssen, Takeda: Membership on an entity's Board of Directors or advisory committees. Facon:Takeda: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Hulin:celgene: Consultancy, Honoraria; Janssen, AbbVie, Celgene, Amgen: Honoraria. Hashim:Ingress-Health: Employment. Vincken:Janssen: Employment, Equity Ownership. Kampfenkel:Janssen: Employment, Equity Ownership. Cote:Janssen: Employment, Equity Ownership. Moreau:Janssen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 390-390 ◽  
Author(s):  
Mark A. Schroeder ◽  
H. Jean Khoury ◽  
Madan Jagasia ◽  
Haris Ali ◽  
Gary J. Schiller ◽  
...  

Abstract Background: Corticosteroids are considered standard first-line systemic therapy for patients with aGVHD, but this approach is effective in only approximately half of all cases. For patients who progress or do not respond to corticosteroids, no specific agent has been identified as standard, and regimens are typically selected based on investigator experience and patient co-morbidities. In preclinical models, JAK inhibition has been shown to impair production of cytokines as well as the differentiation and trafficking of T cells implicated in the pathogenesis of aGVHD. Retrospective studies have suggested that JAK1/JAK2 inhibition with ruxolitinib treatment provides clinical benefit in patients with steroid-refractory GVHD (Zeiser et al, Leukemia 2015;29:2062-2068). Herein, we report preliminary safety results from a prospective randomized, parallel-cohort, open-label phase 1 trial evaluating the potent and selective JAK 1 inhibitor INCB039110 in patients with aGVHD. Methods: Male or female patients 18 years or older who underwent their first allo-hematopoietic stem cell transplant (HSCT) from any donor source and developed grades IIB-IVD aGVHD were eligible for the study. Patients were randomized 1:1 to either a 200 or 300 mg oral daily dose of INCB039110 in combination with corticosteroids, and were stratified based on prior treatment status (treatment-naive [TN] versus steroid-refractory [SR]). The primary endpoint of the study was safety and tolerability; secondary endpoints included overall response rate at Days 14, 28, 56, and 100, non-relapse mortality, and pharmacokinetic (PK) evaluations. Patients were assessed through Day 28 for dose-limiting toxicities (DLTs) and response. A Bayesian approach was used for continuous monitoring of DLTs from Days 1-28. Treatment continued until GVHD progression, unacceptable toxicity, or withdrawal from the study. Acute GVHD was graded according to MN-CIBMTR criteria; adverse events (AEs) were graded according to NCICTCAE v 4.03. Results: Between January and June 2016, 31 patients (TN, n=14; SR, n= 17) were randomized. As of July 25, 2016, data were available from 30 patients who received an oral daily dose of 200 mg (n=14) or 300 mg (n=16) INCB039110 in combination with 2 mg/kg methylprednisolone (or equivalent dose of prednisone). The median durations of treatment were 60.8 days and 56.5 days for patients receiving a daily dose of 200 mg and 300 mg INCB039110, respectively. One DLT of Grade 3 thrombocytopenia was reported. The most frequently reported AEs included thrombocytopenia/platelet count decrease (26.7%), diarrhea (23.3%), peripheral edema (20%), fatigue (16.7%), and hyperglycemia (16.7%). Grade 3 or 4 AEs occurred in 77% of patients and with similar frequency across dose groups and included cytomegalovirus infections (n=3), gastrointestinal hemorrhage (n=3), and sepsis (n=3). Five patients had AEs leading to a fatal outcome, including multi-organ failure (n=2), sepsis (n=1), disease progression (n=1), and bibasilar atelectasis, cardiopulmonary arrest, and respiratory distress (n=1); none of the fatal events was attributed to INCB039110. Efficacy and PK evaluations are ongoing and will be updated at the time of presentation. Conclusion: The oral, selective JAK1 inhibitor INCB039110 can be given safely to steroid-naive or steroid-refractory aGVHD patients. The safety profile was generally consistent in both dose groups. Biomarker evaluation, PK, and cellular phenotyping studies are ongoing. The recommended phase 2 dose will be selected and reported based on PK studies and final safety data. Disclosures Schroeder: Incyte Corporation: Honoraria, Research Funding. Khoury:Incyte Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding. Jagasia:Incyte Corporation: Research Funding; Therakos: Research Funding; Janssen: Research Funding. Ali:Incyte Corporation: Research Funding. Schiller:Incyte Corporation: Research Funding. Arbushites:Incyte Corporation: Employment, Equity Ownership. Delaite:Incyte Corporation: Employment, Equity Ownership. Yan:Incyte Corporation: Employment, Equity Ownership. Rhein:Incyte Corporation: Employment, Equity Ownership. Perales:Merck: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Incyte Corporation: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Chen:Incyte Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding. DiPersio:Incyte Corporation: Research Funding.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 886-886
Author(s):  
Partow Kebriaei ◽  
Matthias Stelljes ◽  
Daniel J. DeAngelo ◽  
Nicola Goekbuget ◽  
Hagop M. Kantarjian ◽  
...  

Abstract Introduction: Attaining complete remission (CR) prior to HSCT is associated with better outcomes post-HSCT. Inotuzumab ozogamicin (INO), an anti-CD22 antibody conjugated to calicheamicin, has shown significantly higher remission rates (CR/CRi and MRD negativity) compared with standard chemotherapy (SC) in patients (pts) with R/R ALL (Kantarjian et al. N Engl J Med. 2016). Pts treated with INO were more likely to proceed to HSCT than SC, which allowed for a higher 2-yr probability of overall survival (OS) than patients receiving SC (39% vs 29%). We investigated the role of prior transplant and proceeding directly to HSCT after attaining remission from INO administration as potential factors in determining post-HSCT survival to inform when best to use INO in R/R ALL patients. Methods: The analysis population consisted of R/R ALL pts who were enrolled and treated with INO and proceeded to allogeneic HSCT as part of two clinical trials: Study 1010 is a Phase 1/2 trial (NCT01363297), while Study 1022 is the pivotal randomized Phase 3 (NCT01564784) trial. Full details of methods for both studies have been previously published (DeAngelo et al. Blood Adv. 2017). All reference to OS pertains to post-HSCT survival defined as time from HSCT to death from any cause. Results: As of March 2016, out of 236 pts administered INO in the two studies (Study 1010, n=72; Study 1022, n=164), 101 (43%) proceeded to allogeneic HSCT and were included in this analysis. Median age was 37 y (range 20-71) with 55% males. The majority of pts received INO as first salvage treatment (62%) and 85% had no prior SCT. Most pts received matched HSCTs (related = 25%; unrelated = 45%) with peripheral blood as the predominant cell source (62%). The conditioning regimens were mainly myeloablative regimens (60%) and predominantly TBI-based (62%). Dual alkylators were used in 13% of pts, while thiotepa was used in 8%. The Figure shows post-transplant survival in the different INO populations: The median OS post-HSCT for all pts (n=101) who received INO and proceeded to HSCT was 9.2 mos with a 2-yr survival probability of 41% (95% confidence interval [CI] 31-51%). In patients with first HSCT (n=86) the median OS post-HSCT was 11.8 mos with a 2-yr survival probability of 46% (95% CI 35-56%). Of note, some patients lost CR while waiting for HSCT and had to receive additional treatments before proceeding to HSCT (n=28). Those pts who went directly to first HSCT after attaining remission with no intervening additional treatment (n=73) fared best, with median OS post-HSCT not reached with a 2-yr survival probability of 51% (95% CI 39-62%). In the latter group, 59/73 (80%) attained MRD negativity, and 49/73 (67%) were in first salvage therapy. Of note, the post-HSCT 100-day survival probability was similar among the 3 groups, as shown in the Table. Multivariate analyses using Cox regression modelling confirmed that MRD negativity during INO treatment and no prior HSCT were associated with lower risk of mortality post-HSCT. Other prognostic factors associated with worse OS included older age, higher baseline LDH, higher last bilirubin measurement prior to HSCT, and use of thiotepa. Veno-occlusive disease post-transplant was noted in 19 of the 101 pts who received INO. Conclusion: Administration of INO in R/R ALL pts followed with allogeneic HSCT provided the best long-term survival benefit among those who went directly to HSCT after attaining remission and had no prior HSCT. Disclosures DeAngelo: Glycomimetics: Research Funding; Incyte: Consultancy, Honoraria; Blueprint Medicines: Honoraria, Research Funding; Takeda Pharmaceuticals U.S.A., Inc.: Honoraria; Shire: Honoraria; Pfizer Inc.: Consultancy, Honoraria, Research Funding; Novartis Pharmaceuticals Corporation: Consultancy, Honoraria, Research Funding; BMS: Consultancy; ARIAD: Consultancy, Research Funding; Immunogen: Honoraria, Research Funding; Celgene: Research Funding; Amgen: Consultancy, Research Funding. Kantarjian: Novartis: Research Funding; Amgen: Research Funding; Delta-Fly Pharma: Research Funding; Bristol-Meyers Squibb: Research Funding; Pfizer: Research Funding; ARIAD: Research Funding. Advani: Takeda/ Millenium: Research Funding; Pfizer: Consultancy. Merchant: Pfizer: Consultancy, Research Funding. Stock: Amgen: Consultancy; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Consultancy, Membership on an entity's Board of Directors or advisory committees. Wang: Pfizer: Employment, Equity Ownership. Zhang: Pfizer: Employment, Equity Ownership. Loberiza: Pfizer: Employment, Equity Ownership. Vandendries: Pfizer: Employment, Equity Ownership. Marks: Pfizer: Consultancy, Honoraria, Speakers Bureau; Amgen: Consultancy, Honoraria, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3512-3512
Author(s):  
Rachael F. Grace ◽  
D. Mark Layton ◽  
Frédéric Galactéros ◽  
Wilma Barcellini ◽  
Eduard J. van Beers ◽  
...  

Background: Pyruvate kinase (PK) deficiency is a congenital hemolytic anemia caused by mutations in the PKLR gene, leading to a deficiency of the glycolytic enzyme red cell PK (PK-R). Current treatments for PK deficiency are supportive only. Mitapivat (AG-348) is an oral, small-molecule, allosteric PK-R activator in clinical trials for PK deficiency. We previously described results from DRIVE PK, a phase 2, randomized, open-label, dose-ranging study in adults with PK deficiency (N=52) treated with mitapivat for a median of 6 months. Aim: To report long-term safety and efficacy of mitapivat in patients who continue treatment in the ongoing Extension period of the DRIVE PK study (ClinicalTrials.gov NCT02476916). Methods: Patients were eligible to participate if ≥18 years of age with a confirmed diagnosis of PK deficiency (enzyme and molecular testing); baseline hemoglobin (Hb) levels ≤12.0 g/dL (males) or ≤11.0 g/dL (females); and if they had not received more than 3 units of red blood cells in the prior 12 months, with no transfusions in the prior 4 months. Patients were initially randomized 1:1 to receive mitapivat 50 mg twice daily (BID) or 300 mg BID for a 6-month Core period. Dose adjustment was allowed during the Core period based on safety and efficacy. Patients experiencing clinical benefit without concerning safety issues related to mitapivat (investigator discretion) could opt to enter the Extension period, with follow-up visits every 3 months. Safety (adverse events [AEs]) and efficacy (hematologic parameters including Hb) were assessed. Protocol amendments during the Extension period required that (1) patients who did not have an increase from baseline Hb of ≥1.0 g/dL for ≥3 of the prior 4 measurements withdraw from the study, and (2) patients treated with mitapivat doses &gt;25 mg BID undergo a dose taper and continue on the dose that maintained their Hb level no lower than 1.0 g/dL below their pre-taper Hb level. Results: Fifty-two patients enrolled in this study and were treated in the 24-week Core period; 43 (83%) patients completed the Core period and 36 (69%) entered the Extension period. Eighteen patients discontinued from the Extension period: investigator decision (n=8), AEs (n=1), consent withdrawal (n=1), noncompliance (n=1), or other (n=7). Thus, 18 patients, all of whom received ≥29 months of treatment with mitapivat (median 35.6, range 28.7-41.9) have continued treatment. Ten of these 18 patients were male, 11 had a prior splenectomy, and 5 had a history of iron chelation. Median age was 33.5 (range 19-61) years; mean baseline Hb was 9.7 (range 7.9-12.0) g/dL. All patients had ≥1 missense PKLR mutation. The doses (post-taper) at which treatment was continued were (BID): ≤25 mg (n=12), 50 mg (n=5), and 200 mg (n=1). Improvements in Hb levels and markers of hemolysis (reticulocytes, indirect bilirubin, haptoglobin) were sustained (Figure). Among the 18 patients, headache was the most commonly reported AE during both the Extension (n=7, 38.9%) and Core (n=10, 55.6%) periods. Reports of insomnia and fatigue during the Extension period (n=5, 27.8% each) were the same as or similar to those during the Core period. There were fewer reports of nausea (2 vs 6) and hot flush (0 vs 5) in the Extension period. Nasopharyngitis was reported in 5 patients in the Extension period vs 1 patient in the Core period. These data are consistent with the AE profile for the 52 patients treated overall in the Core period, in that headache (44%), insomnia (40%), and nausea (38%) were the most commonly reported AEs and were transient (generally resolved within 7 days without intervention). Conclusion: Chronic daily dosing with mitapivat for a median of 3 years was well tolerated, with no new safety signals reported. Increased Hb levels and improvements in hemolysis markers were sustained at the optimized individual doses. These long-term data support the potential of mitapivat as the first disease-altering therapy for PK deficiency. Two phase 3 trials are underway to further study the effect of mitapivat in patients with PK deficiency. Disclosures Grace: Novartis: Research Funding; Agios Pharmaceuticals, Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Layton:Novartis: Membership on an entity's Board of Directors or advisory committees; Cerus Corporation: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees. Galactéros:Addmedica: Membership on an entity's Board of Directors or advisory committees. Barcellini:Novartis: Research Funding, Speakers Bureau; Alexion: Consultancy, Research Funding, Speakers Bureau; Apellis: Consultancy; Incyte: Consultancy, Other: Advisory board; Agios: Consultancy, Other: Advisory board; Bioverativ: Consultancy, Other: Advisory board. van Beers:Agios Pharmaceuticals, Inc.: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Research Funding; Pfizer: Research Funding; RR Mechatronics: Research Funding. Ravindranath:Agios Pharmaceuticals, Inc.: Other: I am site PI on several Agios-sponsored studies, Research Funding. Kuo:Agios: Consultancy; Alexion: Consultancy, Honoraria; Apellis: Consultancy; Bioverativ: Other: Data Safety Monitoring Board; Bluebird Bio: Consultancy; Celgene: Consultancy; Novartis: Consultancy, Honoraria; Pfizer: Consultancy. Sheth:Apopharma: Other: Clinical trial DSMB; CRSPR/Vertex: Other: Clinical Trial Steering committee; Celgene: Consultancy. Kwiatkowski:bluebird bio, Inc.: Consultancy, Research Funding; Apopharma: Research Funding; Novartis: Research Funding; Terumo: Research Funding; Celgene: Consultancy; Imara: Consultancy; Agios: Consultancy. Hua:Agios Pharmaceuticals, Inc.: Employment, Equity Ownership. Hawkins:Bristol Myers Squibb: Equity Ownership; Infinity Pharma: Equity Ownership; Agios: Employment, Equity Ownership; Jazz Pharmaceuticals: Equity Ownership. Mix:Agios: Employment, Equity Ownership. Glader:Agios Pharmaceuticals, Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3543-3543 ◽  
Author(s):  
Alexis A. Thompson ◽  
Mark C. Walters ◽  
Janet L. Kwiatkowski ◽  
Suradej Hongeng ◽  
John B. Porter ◽  
...  

Background Transfusion-dependent β-thalassemia (TDT) is treated with regular, lifelong red blood cell (RBC) transfusions and despite iron-chelating therapy, carries a risk of serious organ damage from iron overload and other complications. Transplantation with autologous CD34+ cells encoding a βA-T87Q-globin gene (LentiGlobin for β-thalassemia) is being evaluated in patients with TDT. Interim results are presented here from the ongoing, international, single-arm, phase 3 Northstar-2 study (HGB-207; NCT02906202) of LentiGlobin gene therapy in pediatric, adolescent, and adult patients with TDT (defined by receiving ≥100 mL/kg/yr of RBCs or ≥8 RBC transfusions/yr) and non-β0/β0 genotypes. Methods Patients undergo hematopoietic stem cell (HSC) mobilization with G-CSF and plerixafor. Following apheresis, CD34+ cells are transduced with BB305 lentiviral vector and infused into patients after pharmacokinetic-adjusted, single-agent busulfan myeloablation. The primary efficacy endpoint is transfusion independence (TI; weighted average hemoglobin [Hb] ≥9 g/dL without RBC transfusions for ≥12 months). HSC engraftment, βA-T87Q-globin expression, Hb levels, detection of replication competent lentivirus (RCL), and adverse events (AE) are also assessed. Patients are followed for 2 years and offered participation in a long-term follow-up study. Summary statistics are presented as median (min - max). Results Twenty patients were treated in Northstar-2 as of 13 December 2018 and have been followed for a median of 8.1 (0.5 - 22.2) months. At enrollment, median age was 16 (8 - 34) years; 5 patients were &lt;12 years of age. Median drug product cell dose was 8.0 (5.0 - 19.9) x106 cells/kg and vector copy number was 3.2 (1.9 - 5.6) copies/diploid genome. Time to neutrophil and platelet engraftment in the 18/20 and 15/20 evaluable patients was 22.5 (13 - 32) and 45 (20 - 84) days, respectively. Non-hematologic grade ≥3 AEs in ≥3 patients after LentiGlobin infusion included stomatitis (n=12), febrile neutropenia (n=6), pyrexia (n=4), epistaxis (n=3), and veno-occlusive liver disease (n=3). One serious AE of grade 3 thrombocytopenia was considered possibly related to LentiGlobin. No patient died, had graft failure, or had detection of RCL. No insertional oncogenesis has been observed. Gene therapy-derived HbAT87Q stabilized approximately 6 months after infusion. In adolescent and adult patients treated with LentiGlobin, median HbAT87Q at Months 6, 12 and 18 was 9.5 (n=11), 9.2 (n=8), and 9.5 (n=3) g/dL, respectively. The median total Hb without transfusions at Months 6, 12, and 18 were 11.9 (n=11), 12.4 (n=8), 12.3 (n=2) g/dL, respectively. At Month 6, 91% (10/11) of patients had total Hb of &gt;11 g/dL without transfusions. Five adolescent and adult patients were evaluable for the primary endpoint of transfusion independence, 4 (80%) of whom achieved TI. The median weighted average Hb during TI was 12.4 (11.5 - 12.6) g/dL which compared favorably to pre-transfusion nadir Hb levels before enrollment (median 9.1 g/dL [7.5 - 10.0 g/dL]). At time of analysis, the median duration of TI was 13.6 (12.0 - 18.2) months. One patient who did not achieve TI stopped transfusions for 11.4 months but resumed transfusions due to recurrent anemia. This patient had a 71.4% reduction in RBC transfusion volume from Month 6 to Month 18 compared to baseline. Marrow cellularity and myeloid:erythroid (M:E) ratios were evaluated in 8 adolescent and adult patients with ≥12 months follow-up to assess the effect of LentiGlobin treatment on dyserythropoiesis. Seven of 8 patients had improved marrow M:E ratios at Month 12 (0.63 - 1.90) compared with baseline (0.14 - 0.48). In patients who stopped transfusions, soluble transferrin receptor levels were reduced by a median of 72% (58% - 78%) at Month 12 (n=6). Updated outcomes in adolescents and adults and outcomes in pediatric patients will be reported. Summary In this update of the Northstar-2 study of LentiGlobin gene therapy in patients with TDT and non-β0/β0 genotypes, transfusion independence was observed in 4/5 evaluable adolescent and adults and 10/11 treated patients had total Hb of &gt;11 g/dL without transfusion support 6 months after LentiGlobin infusion. HbAT87Q stabilized approximately 6 months after treatment and patients who stopped RBC transfusions had improved erythropoiesis. A safety profile consistent with busulfan conditioning was observed after LentiGlobin gene therapy. Disclosures Thompson: bluebird bio, Inc.: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Baxalta: Research Funding. Walters:TruCode: Consultancy; AllCells, Inc: Consultancy; Editas Medicine: Consultancy. Kwiatkowski:bluebird bio, Inc.: Consultancy, Research Funding; Terumo: Research Funding; Celgene: Consultancy; Agios: Consultancy; Imara: Consultancy; Apopharma: Research Funding; Novartis: Research Funding. Porter:Protagonism: Honoraria; Celgene: Consultancy, Honoraria; Bluebird bio: Consultancy, Honoraria; Agios: Consultancy, Honoraria; La Jolla: Honoraria; Vifor: Honoraria; Silence therapeutics: Honoraria. Thrasher:Rocket Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Orchard Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Generation Bio: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; 4BIOCapital: Membership on an entity's Board of Directors or advisory committees. Thuret:BlueBird bio: Other: investigators for clinical trials, participation on scientific/medical advisory board; Celgene: Other: investigators for clinical trials, participation on scientific/medical advisory board; Novartis: Other: investigators for clinical trials, participation on scientific/medical advisory board; Apopharma: Consultancy. Elliot:bluebird bio, Inc.: Employment, Equity Ownership. Tao:bluebird bio, Inc.: Employment, Equity Ownership. Colvin:bluebird bio, Inc.: Employment, Equity Ownership. Locatelli:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees; bluebird bio: Consultancy; Miltenyi: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document