scholarly journals Blockade of Interleukin 27 Signaling Attenuates Graft Versus Host Disease By Augmenting CD4+ and CD8+ Regulatory T Cell Reconstitution

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 150-150
Author(s):  
Ludovic Belle ◽  
Kimberle A. Agle ◽  
Vivian Zhou ◽  
Vanessa Yuan ◽  
Jie Sun ◽  
...  

Abstract The interleukin-6 (IL-6) cytokine superfamily (i.e. IL-6, IL-12, and IL-23) plays a major role in the modulation of inflammatory and regulatory pathways during graft versus host disease (GVHD). IL-27, a recently discovered member of this family, is a heterodimeric cytokine that is composed of the p28 and EBI3 subunits and signals through a heterodimeric receptor composed of WSX-1 and gp130. Notably, IL-6 also uses gp130 as a signaling component which biologically links IL-27 and IL-6. IL-27 has been shown to have opposing proinflammatory and immunoregulatory effects, but its role in GVHD is not well understood. To define the functional significance of IL-27, lethally irradiated Balb/c (H-2d) mice were transplanted with C57BL/6J (H-2b) BM and spleen cells, and then treated with an anti-IL-27p28-specific antibody on days 0 and +6. p28 antibody-treated animals had significantly improved weight recovery and overall survival (47% versus 0% survival at day 60, p=0.002), as well as reduced numbers of proinflammatory CD4+ and CD8+ IFN-γ+ T cells in GVHD target organs, when compared to isotype control antibody-treated mice. A similar outcome was observed in an MHC-matched, minor antigen disparate model (B6→Balb.B), indicating that this was not a strain-specific phenomenon. Given the similarities between IL-6 and IL-27, we examined whether blockade of IL-27 promoted regulatory T cell (Treg) reconstitution as has been observed with inhibition of IL-6 signaling. Recipients transplanted with BM grafts from B6 Foxp3EGFP reporter animals and treated with p28 antibody had a significant increase in the number of CD4+ nTregs, CD4+ iTregs and CD8+ iTregs in GVHD target organs, indicating that blockade of IL-27 augmented global Treg reconstitution. In fact, inhibition of IL-27 was more effective at augmenting Treg reconstitution than comparable antibody blockade of IL-6. To further elucidate the role of IL-27, we employed transgenic IL-27−/− and IL-27R−/− animals to dissect the relevant contributions of donor and recipient populations. Paradoxically, we observed that transplantation with IL-27−/− donor grafts exacerbated GVHD mortality and augmented accumulation of proinflammatory T cells, whereas transplantation of recipient IL-27−/− mice with wild type grafts had no effect on transplant outcomes. This discordance between antibody-based and genetic studies was unexpected and led us to consider whether there were steady state alterations in T cells from IL-27−/− animals that biased these cells towards a proinflammatory phenotype. To that end, we observed that naive CD8+ T cells from IL-27−/− mice had greater IFN-γ production than wild type cells after in vitro polyclonal stimulation and CD4+ nTregs from these animals had diminished expression of CXCR3 which is critical for Treg trafficking into inflamed tissue sites. Thus, the lack of endogenous IL-27 resulted in intrinsic immune dysregulation which led to an exacerbation of GVHD after transfer of these T cells into recipients. To resolve this paradox, we employed IL-27R−/− (WSX-1−/−) mice and demonstrated that mice transplanted with IL-27R−/− grafts had enhanced weight recovery and survival providing confirmation that blockade of IL-27 signaling reduced GVHD. In addition, using IL-27R−/− Foxp3EGFP reporter mice, we observed increased frequencies and numbers of CD4+ and CD8+ Foxp3+ T cells in mice reconstituted with IL-27R−/− grafts, confirming results observed with p28 antibody blockade. Since IL-10 is a mechanism by which CD4+ Tregs suppress GVHD and IL-27 has been shown to enhance T cell-derived IL-10 secretion in nontransplant models, we examined whether IL-27 blockade adversely affected IL-10 production by Tregs. Recipients transplanted with marrow grafts from IL-10.BitFoxp3EGFP dual reporter animals and treated with p28 antibody had a significant reduction in the frequency of IL-10-producing conventional CD4+ and CD8+ T cells in GVHD target organs. Notably, however, there was no difference in the frequency of CD4+ Foxp3+ IL-10+ T cells, indicating that blockade of IL-27 signaling preferentially affected conventional T cells and had no adverse effect on CD4+ Foxp3+ T cell-derived IL-10 production. In summary, these studies demonstrate that blockade of IL-27 signaling potently augments Treg reconstitution leading to a reduction in the severity of GVHD and may therefore represent a novel strategy to reduce mortality from this disease in man. Disclosures No relevant conflicts of interest to declare.

2011 ◽  
Vol 186 (11) ◽  
pp. 6238-6254 ◽  
Author(s):  
Anthony D. Foster ◽  
Kateryna Soloviova ◽  
Irina Puliaeva ◽  
Maksym Puliaiev ◽  
Roman Puliaev ◽  
...  

1999 ◽  
Vol 189 (7) ◽  
pp. 1073-1081 ◽  
Author(s):  
Defu Zeng ◽  
David Lewis ◽  
Sussan Dejbakhsh-Jones ◽  
Fengshuo Lan ◽  
Marcos García-Ojeda ◽  
...  

Sorted CD4+ and CD8+ T cells from the peripheral blood or bone marrow of donor C57BL/6 (H-2b) mice were tested for their capacity to induce graft-versus-host disease (GVHD) by injecting the cells, along with stringently T cell–depleted donor marrow cells, into lethally irradiated BALB/c (H-2d) host mice. The peripheral blood T cells were at least 30 times more potent than the marrow T cells in inducing lethal GVHD. As NK1.1+ T cells represented <1% of all T cells in the blood and ∼30% of T cells in the marrow, the capacity of sorted marrow NK1.1− CD4+ and CD8+ T cells to induce GVHD was tested. The latter cells had markedly increased potency, and adding back marrow NK1.1+ T cells suppressed GVHD. The marrow NK1.1+ T cells secreted high levels of both interferon γ (IFN-γ) and interleukin 4 (IL-4), and the NK1.1− T cells secreted high levels of IFN-γ with little IL-4. Marrow NK1.1+ T cells obtained from IL-4−/− rather than wild-type C57BL/6 donors not only failed to prevent GVHD but actually increased its severity. Together, these results demonstrate that GVHD is reciprocally regulated by the NK1.1− and NK1.1+ T cell subsets via their differential production of cytokines.


Blood ◽  
2020 ◽  
Author(s):  
Cheng Yin Yuan ◽  
Vivian Zhou ◽  
Garrett Sauber ◽  
Todd M Stollenwerk ◽  
Richard Komorowski ◽  
...  

Graft versus host disease (GVHD) pathophysiology is a complex interplay between cells that comprise the adaptive and innate arms of the immune system. Effective prophylactic strategies are therefore contingent upon approaches that address contributions from both immune cell compartments. In the current study, we examined the role of the type 2 cannabinoid receptor (CB2R) which is expressed on nearly all immune cells and demonstrated that absence of the CB2R on donor CD4+ or CD8+ T cells, or administration of a selective CB2R pharmacological antagonist, exacerbated acute GVHD lethality. This was accompanied primarily by the expansion of proinflammatory CD8+ T cells indicating that constitutive CB2R expression on T cells preferentially regulated CD8+ T cell alloreactivity. Using a novel CB2R-EGFP reporter mouse, we observed significant loss of CB2R expression on T cells, but not macrophages, during acute GVHD, indicative of differential alterations in receptor expression under inflammatory conditions. Therapeutic targeting of the CB2R with the agonists, tetrahydrocannabinol (THC) and JWH-133, revealed that only THC mitigated lethal T cell-mediated acute GVHD. Conversely, only JWH-133 was effective in a sclerodermatous chronic GVHD model where macrophages contribute to disease biology. In vitro, both THC and JWH-133 induced arrestin recruitment and ERK phosphorylation via CB2R, but THC had no effect on CB2R-mediated inhibition of adenylyl cyclase. These studies demonstrate that the CB2R plays a critical role in the regulation of GVHD and suggest that effective therapeutic targeting is dependent upon agonist signaling characteristics and receptor selectivity in conjunction with the composition of pathogenic immune effector cells.


2019 ◽  
Vol 3 (7) ◽  
pp. 984-994 ◽  
Author(s):  
Jennifer S. Whangbo ◽  
Haesook T. Kim ◽  
Sarah Nikiforow ◽  
John Koreth ◽  
Ana C. Alho ◽  
...  

Abstract Patients with chronic graft-versus-host disease (cGVHD) have a paucity of regulatory CD4 T cells (CD4Tregs) that mediate peripheral tolerance. In clinical trials, daily low-dose interleukin-2 (IL-2) has been administered safely for prolonged periods in patients with steroid-refractory cGVHD. Peripheral CD4Tregs expand dramatically in all patients during IL-2 therapy but clinical improvement was observed in ∼50% of patients. Here, we examined the impact of low-dose IL-2 therapy on functional T-cell markers and the T-cell repertoire within CD4Tregs, conventional CD4 T cells (CD4Tcons), and CD8+ T cells. IL-2 had profound effects on CD4Tregs homeostasis in both response groups including selective expansion of the naive subset, improved thymic output, and increased expression of Ki67, FOXP3, and B-cell lymphoma 2 within CD4Tregs. Similar changes were not seen in CD4Tcons or CD8 T cells. Functionally, low-dose IL-2 enhanced, in vitro, CD4Treg-suppressive activity in both response groups, and all patient CD4Tcons were similarly suppressed by healthy donor CD4Tregs. High-throughput sequencing of the T-cell receptor β (TCRβ) locus demonstrated that low-dose IL-2 therapy increased TCR repertoire diversity and decreased evenness within CD4Tregs without affecting CD4Tcons or CD8 T cells. Using clone-tracking analysis, we observed rapid turnover of highly prevalent clones in CD4Tregs as well as the conversion of CD4Tcons to CD4Tregs. After 12 weeks of daily IL-2, clinical responders had a greater influx of novel clones within the CD4Treg compartment compared with nonresponders. Further studies to define the function and specificity of these novel CD4Treg clones may help establish the mechanisms whereby low-dose IL-2 therapy promotes immune tolerance.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3244-3244
Author(s):  
Jenny Zilberberg ◽  
Gichuru N. Loise ◽  
Thea M. Friedman

Abstract Lethal graft-versus-host disease (GVHD) can be induced between MHC-matched murine strains expressing multiple minor histocompatibility antigen (miHA) differences. In the C57BL6 (B6)->BALB.B strain combination, both CD4+ and CD8+ donor T cells can mediate severe lethal GVHD, whereas in the B6->CXB-2 model, in which the CXB-2 strain expresses a subset of the BALB.B miHA, only the CD8+ T cells directly potentiate lethality. We have previously used TCR Vβ CDR3-size spectratype analysis to examine the alloreactive B6 CD4+ and CD8+ T cells, isolated from the lymphohematopoietic compartment after transplantation into both BALB.B and CXB-2 recipients. However, since tissue-specific expression of miHA can potentially elicit differential T cell responses, we have extended our T cell repertoire analysis to examine the responses involved in target tissue damage. Infiltrating host-presensitized B6 CD4+ and CD8+ T cells were isolated post-transplant from the intestines, livers and spleens of lethally irradiated (9 Gy; split-dose) BALB.B and CXB-2 recipients. The results indicated some overlapping Vβ CDR3-size skewing in both the CD4+ and CD8+ T cell repertoires between the BALB.B and CXB-2 recipients within the tissues of each recipient strain. Most notably, spectratype analysis demonstrated tissue specific responses unique to each of the BALB.B and CXB-2 infiltrates. In situ observations of the tissue infiltrating alloreactive T cells were performed by fluorescent microscopy of transplanted B6 T cells constitutively expressing eGFP into BALB.B and CXB-2 recipients, in conjunction with immunohistochemical staining of skewed Vβ families. TUNEL staining was also performed to confirm apoptosis of tissue epithelium. These analyses confirmed the increased infiltration of skewed CD4+ and CD8+ Vβ families within the target tissues.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1337-1337
Author(s):  
Michael J Carlson ◽  
James M. Coghill ◽  
Michelle L. West ◽  
Angela Panoskaltsis-Mortari ◽  
Bruce R. Blazar ◽  
...  

Abstract Abstract 1337 Poster Board I-359 INTRODUCTION Graft-versus-host disease (GVHD) is a major complication following allogeneic bone marrow transplantation (BMT). Despite advances in understanding the etiology of GVHD it remains a formidable obstacle to the widespread application of BMT. A number of studies have demonstrated that T regulatory (Treg) cells represent a potential therapy for GVHD as Tregs have been shown to inhibit GVHD while preserving the beneficial graft-versus-leukemia (GVL) effect. Numerous groups, including our own, have demonstrated the importance of T cell migration in the pathology of GVHD. Following conditioning, donor T cells migrate to secondary lymphoid tissues. Once activated in the lymphatics, T cells migrate to GVHD target organs including; the skin, liver, lung and the gastrointestinal (GI) tract in response to the local production of chemokines. Disruption of chemokine-chemokine receptor interactions has been demonstrated to affect the pathology of GVHD. Previously, we have shown that Tregs lacking the chemokine receptor CCR5, which binds CCL3, CCL4, and CCL5, do not protect animals from lethal GVHD as well as WT Tregs, due to their impaired migration to the liver and lung. Thus, a greater understanding of the function of chemokine receptors on Tregs is important in deciphering how Tregs function and whether targeting these cells to lymphoid tissue or GVHD target organs would be preferable for treating patients in clinical trials. METHODS We utilized a parent into F1 haploidentical model to assess the role of CCR1 in Treg-mediated protection from GVHD. Here we demonstrate Tregs lacking CCR1, another receptor for CCL3 and CCL5, were unable to protect animals against lethal acute GVHD. While 67% of B6D2 recipients given 1×106 WT Tregs supplemented with 5×106 WT T cells and 3×106 B6 T cell-depleted BM cells survived, only 15% of the recipients given CCR1−/− Tregs survived (p < 0.03; Fisher's exact test). B6D2 recipient mice given WT Tregs had significantly reduced clinical scores for GVHD compared to B6D2 recipients of CCR1−/− Tregs (p <0.05) with elevated GVHD scores starting on day 28 post-transplant. Histopathology revealed significantly worse pathology in the liver (p < 0.03) and colon (p < 0.05) of CCR1−/− Treg recipients vs. WT Treg recipients. In vitro analysis demonstrated that CCR1−/− Tregs were capable of suppressing T cell responses to allo-antigen equally as well as WT Tregs, and CCR1−/− Tregs attained a normal activation phenotype. Interestingly, preliminary experiments suggested that CCR1−/− Tregs migrated to and/or expanded in GVHD target organs to a similar extent as WT Tregs. CONCLUSIONS Treg expression of CCR1 is required for the inhibition of GVHD. Tregs lacking CCR1 led to significantly more tissue destruction in the liver and colon, two predominant sites of GVHD pathology. Of interest, the migration of CCR1−/− Tregs to GVHD target organs and secondary lymphoid tissues did not appear to be compromised suggesting that CCR1 may be required for the function of Tregsin vivo. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 96 (9) ◽  
pp. 2973-2980 ◽  
Author(s):  
Jonathan S. Serody ◽  
Susan E. Burkett ◽  
Angela Panoskaltsis-Mortari ◽  
Judith Ng-Cashin ◽  
Eileen McMahon ◽  
...  

To investigate the mechanism by which macrophage inflammatory protein-1α (MIP-1α) affects graft-versus-host disease (GVHD), the expression and function of MIP-1α in 2 murine models of GVHD were evaluated. In irradiated class I and class II disparate recipients, the expression of messenger RNA (mRNA) and protein for MIP-1α was significantly increased in GVHD target organs after transfer of allogeneic lymphocytes compared to syngeneic lymphocytes. When lymphocytes unable to make MIP-1α were transferred, there was a decrease in the production of MIP-1α in the liver, lung, and spleen of bm1 (B6.C-H2bm1/By) and bm12 (B6.C-H2bm12/KhEg) recipients compared to the transfer of wild-type splenocytes. At day 6 there was a 4-fold decrease in the number of transferred CD8+ T cells in the lung and approximately a 2-fold decrease in the number of CD8+ T cells in the liver and spleen in bm1 recipients after transfer of MIP-1α–deficient (MIP-1α−/−) splenocytes compared to wild-type (MIP-1α+/+) splenocytes. These differences persisted for 13 days after splenocyte transfer. In contrast, the number of donor CD4+ T cells found in the liver and lung was significantly increased after the transfer of MIP-1α−/− compared to wild-type splenocytes in bm12 recipients from day 6 through day 10. Thus, the transfer of allogeneic T cells was associated with the enhanced expression of MIP-1α in both a class I and class II mismatch setting. However, the increased expression only led to enhanced recruitment of CD8+, but not CD4+, donor T cells. Production of MIP-1α by donor T cells is important in the occurrence of GVHD and functions in a tissue-dependent fashion.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1311-1311
Author(s):  
Corinna Leng ◽  
Cuiling Li ◽  
Judy Ziegler ◽  
Anna Lokshin ◽  
Suzanne Lentzsch ◽  
...  

Abstract Histone deacetylase (HDAC) inhibitors have been shown to reduce development of graft versus host disease [GVHD] following allogeneic bone marrow transplantation [BMT]. Administration of the HDAC inhibitor suberonylanilide hydroxamic acid [SAHA] resulted in a significantly reduced GVHD-dependent mortality following fully MHC-mismatched allogeneic BMT. Median Survival Time (MST) for vehicle and SAHA-treated mice were 7.5 days and 38 days respectively. However, SAHA treatment did not affect T cell activation nor T cell expansion in vitro and in vivo as determined by MLR assays, phenotypic analysis of donor T cells with regard to expression of the CD25 activation antigen and calculation of donor CD4+ and CD8+ T cell numbers on days +3 and +6 post-BMT. Thus, SAHA treatment was not able to inhibit the strong upregulation of CD25 antigen on CD8+ T cells observed during induction of GVHD on days +3 and +6 post-BMT. We therefore focused on the effects of SAHA treatment on efferent immune effects including cytokine secretion and intracellular signaling events in vitro and in vivo following GVHD induction. SAHA treatment broadly inhibited lipopolysaccharide [LPS] and allo-antigen-induced cytokine/chemokine secretion in vitro like MIP-1-α, IP-10, IFN-γ, TNF-α and IL-6 and led also to a significant decrease in IFN-γ and TNF-α levels in vivo following induction of GVHD. Concomitantly, SAHA treatment inhibited phosphorylation of STAT1 and STAT3 in response to LPS and allo-activation in vitro. Furthermore, analysis of liver tissue and spleens from SAHA-treated animals with GVHD showed a significant decrease in phosphorylated STAT1. In contrast SAHA treatment had only moderate effects on p38 or ERK1,2 Mitogen-activated Protein Kinase (MAPK) pathway underscoring the relevance of the inhibition of the STAT1 pathway. In conclusion, GVHD is associated with a strong induction of phosphorylation of STAT1 in the liver and spleen and SAHA-dependent reduction of GVHD is associated with systemic and local inhibition of pSTAT1 and modulation of the inflammatory cytokine milieu during the efferent immune response.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4993-4993
Author(s):  
Eva Distler ◽  
Simone Thomas ◽  
Elke Schuerer ◽  
Cedrik Britten ◽  
Martin Schuler ◽  
...  

Abstract Diagnosis of graft-versus-host disease (GVHD) is mainly based on clinical features and on tissue biopsies. However, clinicians and pathologists are well aware of cases, in which GVHD cannot be distinguished from infections arising from severe immunodeficiency after allogeneic stem-cell transplantation (SCT). This may pose a deep therapeutic dilemma of whether to modify immunosuppressive treatment or to use donor lymphocyte infusion (DLI) for promoting anti-microbial immunity. We observed a 68-year-old patient with myelodysplastic syndrome who developed acute GVHD grade II of skin and gut at d+16 after T-cell depleted reduced-intensity SCT (Fig. 1). GVHD was confirmed by histology and responded to prednisolone therapy. From d+90 to d+240, the patient suffered from massive diarrhea (>2L per day) and recurrent episodes of lower gastrointestinal bleeding. Histopathology analysis on gut biopsies showed a heterogeneous picture with signs of GVHD and ulcerative inflammation. In stool screening, we isolated norovirus type 2 (ELISA, PCR) between d+111 and d+229, thereby confirming the longest infection with this virus ever reported. Tapering immunosuppression did not improve diarrhea, and the patient required intensive care due to serious fluid imbalance. Because of severe lymphopenia (<100 per μL CD3 T cells), we considered DLI therapy to promote T cell reconstitution and norovirus clearance. To balance the risk for DLI-induced exacerbation of GVHD, we first analyzed peripheral blood CD8 T cells for anti-recipient reactivity ex vivo by IFN-γ ELISPOT assay. Due to the limited availability of recipient cells and a single HLA disparity between donor (B*3508) and patient (B*3503), we used HLA-deficient K562 cells transfected with mismatched (B*3503) or matched (A*0201) HLA alleles as antigen-presenting cells. Post-transplant CD8 T cells specifically recognized disparate HLA-B*3503 (Fig. 1), but not shared HLA-A*0201. Mismatch-reactive CD8 T cells were detectable at significant numbers (71/105) during the first episode of GVHD and correlated closely with the intensity of diarrhea beyond d+110. Maximum anti-HLA-B*3503 reactivity (439/105) on d+205 was in the range of IFN-γ spot production obtained in mitogen-stimulated controls. Considering this vigorous alloreactivity, we were concerned that scheduled DLI would boost GVHD rather than facilitating norovirus clearance. Therefore, we decided to omit DLI. Patient’s clinical condition improved spontaneously around d+240, and diarrhea did not recur thereafter. In conclusion, we have established a new T cell assay for the rapid detection of anti-HLA mismatch reactivity using K562-HLA transfectants as substitutes for patient cells. In the meantime, we have validated this assay in two further HLA-incompatible donor-patient pairs and generated off-the-shelf K562 transfectants for more than 15 HLA alleles. Ex vivo alloreactivity toward mismatch HLA might be a surrogate marker to facilitate GVHD diagnosis and guide therapy in ambiguous clinical situations, such as the coincident viral infection described herein. Fig. 1: Clinical course and monitoring of all-HLA-B*3503 reactive CD8 T cells ex vivo Fig. 1:. Clinical course and monitoring of all-HLA-B*3503 reactive CD8 T cells ex vivo


2001 ◽  
Vol 194 (10) ◽  
pp. 1433-1440 ◽  
Author(s):  
Pavan Reddy ◽  
Takanori Teshima ◽  
Mark Kukuruga ◽  
Rainer Ordemann ◽  
Chen Liu ◽  
...  

Interleukin (IL)-18 is a recently discovered cytokine that modulates both T helper type 1 (Th1) and Th2 responses. IL-18 is elevated during acute graft-versus-host disease (GVHD). We investigated the role of IL-18 in this disorder using a well characterized murine bone marrow transplantation (BMT) model (B6 → B6D2F1). Surprisingly, blockade of IL-18 accelerated acute GVHD-related mortality. In contrast, administration of IL-18 reduced serum tumor necrosis factor (TNF)-α and lipopolysaccharide (LPS) levels, decreased intestinal histopathology, and resulted in significantly improved survival (75 vs. 15%, P &lt; 0.001). Administration of IL-18 attenuated early donor T cell expansion and was associated with increased Fas expression and greater apoptosis of donor T cells. The administration of IL-18 no longer protected BMT recipients from GVHD when Fas deficient (lpr) mice were used as donors. IL-18 also lost its ability to protect against acute GVHD when interferon (IFN)-γ knockout mice were used as donors. Together, these results demonstrate that IL-18 regulates acute GVHD by inducing enhanced Fas-mediated apoptosis of donor T cells early after BMT, and donor IFN-γ is critical for this protective effect.


Sign in / Sign up

Export Citation Format

Share Document