Evaluation of Enhanced in Vitro Plasma Stability of a Novel Long Acting Recombinant FVIIIFc-VWF-XTEN Fusion Protein

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2279-2279 ◽  
Author(s):  
Ekta Seth Chhabra ◽  
Nancy Moore ◽  
Chris Furcht ◽  
Amy M Holthaus ◽  
Jiayun Liu ◽  
...  

Abstract INTRODUCTION More than 95% of circulating clotting factor VIII (FVIII) exists in a non-covalent complex with von Willebrand Factor (VWF). While VWF stabilizes and protects FVIII from its clearance pathways, it also subjects FVIII to VWF-mediated clearance. Thus, interaction with VWF imposes a limitation on the extent of FVIII half-life extension achieved by current technologies (Fc fusion, PEGylation etc.). Recombinant FVIIIFc-VWF-XTEN (rFVIIIFc-VWF-XTEN) is a novel fusion protein, consisting of the FVIII binding D'D3 domains of VWF fused to a single chain rFVIIIFc (scFVIIIFc). Appending the domains of VWF to FVIII provides the protection and stability of endogenous VWF, while avoiding the limitation imposed by VWF clearance. Besides D'D3 domains, it also contains two XTEN linkers. XTEN is an unstructured polypeptide consisting of six amino acids repeats (Gly, Ala, Pro, Glu, Ser, Thr). Fusion of XTEN to a protein reduces the rate of clearance and degradation of the fusion protein. In rFVIIIFc-VWF-XTEN, one XTEN linker replaces the B-domain of FVIII and other is attached to the D'D3 domains. In preclinical studies, this protein has shown >4-fold prolonged half-life and similar in vivo acute efficacy compared to rFVIII. In the current study, we examined the impact of various modifications on the in vitro plasma stability of rFVIIIFc-VWF-XTEN protein. MATERIALS AND METHODS rFVIIIFc-VWF-XTEN is a fusion protein which is expressed as a dual chain molecule. One chain expresses the D'D3 domains linked to a Fc monomer through an XTEN linker. This polypeptide is co-expressed with a single chain rFVIIIFc monomer to generate a dimer, via the disulfide-bond between the Fc domains. To assess the in vitro plasma stability, fusion proteins were expressed in HEK293 cells, purified and incubated with plasma from FVIII KO (Hem A) or FVIII/VWF DKO mice, for various time periods at 37 degree centigrade. After the desired incubation time, plasma stability of the recombinant proteins was determined by FVIII chromogenic activity assay. Results and Conclusions rFVIIIFc-VWF-XTEN fusion protein showed significantly enhanced in vitro plasma stability compared to rFVIII. In FVIII KO plasma, rFVIII started losing activity by 4 hours, and by 24 hours it lost more than 80% of its activity. The decline in activity was more pronounced and rapid when rFVIII was incubated with FVIII/VWF DKO plasma, mainly due to the absence of protection provided by VWF. Conversely, in the case of rFVIIIFc-VWF-XTEN, there was no significant drop in activity even after 6 hours (in both FVIII KO and DKO plasma). By 24 hours, only 10-15% activity reduction was observed in FVIII KO plasma and about a 35% decrease in DKO plasma. Further studies were conducted to evaluate various parameters which contributed to the improved stability of this fusion protein. Our results suggest that there are multiple factors which contribute to the overall stability of rFVIII-VWF-XTEN protein. These include: presence of covalently attached D'D3 domains, enhanced stability of single chain FVIII isoform used in the fusion protein and presence of the XTEN linker in the B-domain of FVIII. These data suggest that superior plasma stability of this novel fusion protein might be a contributing factor to its prolonged in vivo half-life and efficacy. Disclosures Seth Chhabra: Biogen: Employment, Equity Ownership. Moore:Biogen: Employment, Equity Ownership. Furcht:Biogen: Employment, Equity Ownership. Holthaus:Biogen: Employment. Liu:Biogen: Employment, Equity Ownership. Liu:Biogen: Employment, Equity Ownership. Schellenberger:Amunix Operating Inc: Employment. Kulman:Biogen: Employment. Salas:Biogen: Employment, Equity Ownership. Peters:Biogen: Employment.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4526-4526
Author(s):  
Rahul Palchaudhuri ◽  
Bradley R Pearse ◽  
Jennifer L Proctor ◽  
Sharon L. Hyzy ◽  
Sharon Aslanian ◽  
...  

Abstract Introduction Bone Marrow Transplant (BMT) is a potentially curative treatment for malignant and non-malignant blood disorders and has demonstrated impressive outcomes in autoimmune diseases. Prior to BMT, patients are prepared with high-dose chemotherapy alone or with total body irradiation, and both are associated with early and late morbidities, such as infertility, secondary malignancies and organ toxicity; and substantial risk of mortality. This greatly limits the use of BMT in malignant and non-malignant conditions. To address these issues, we are developing antibody drug conjugates (ADCs) targeting hematopoietic stem cells (HSCs) and immune cells to more safely condition patients for BMT. Results To enable simultaneous HSC and immune cell depletion for BMT we investigated targeting human CD45, a protein expressed exclusively on nearly all blood cells including HSCs. Antibody discovery campaigns identified several antibodies with sub-nanomolar affinities for human and non-human primate (NHP) CD45. We then created anti-CD45 ADCs with drug payloads including DNA-damaging, tubulin-targeting and RNA polymerase-inhibiting molecules. An ADC developed with alpha-amanitin (an RNA polymerase II inhibitor) enabled potent in vitro killing of primary human CD34+ HSCs and immune cells (40-120 picomolar IC50s). With this anti-CD45 amanitin ADC (CD45-AM), we explored depletion of HSCs and immune cells in vivo using humanized NSG mice. A single dose of 1 or 3 mg/kg CD45-AM enabled >95% depletion of human CD34+ cells in the bone marrow as assessed 7 or 14 days post-administration (Figure, n = 3/group, p values < 0.05); >95% depletion of human B-, T- and myeloid cells was observed in the periphery and bone marrow (Figure, p values < 0.05). Control non-targeting isotype matched-ADCs and anti-CD45 antibody not bearing a toxin had minimal effect on either HSC or immune cells. In hematopoietic malignancies, an anti-CD45 ADC would ideally reduce disease burden and enable BMT. In a model of acute lymphoblastic leukemia (REH cell line, n = 10 mice/group), and 3 patient-derived models of FLT3+NPM1+ acute myeloid leukemia (n = 4-5 mice/group per model), a single dose of 1 mg/kg CD45-AM more than doubled the median survival and several mice survived disease-free (p values < 0.001). Anti-CD45 antibodies have been investigated for BMT conditioning in patients as naked antibodies that rely on Fc-effector function to deplete lymphocytes (Biol Blood Marrow Transplant. 2003 9(4): 273-81); or as radioimmunotherapy (Blood. 2006 107(5): 2184-2191). These agents demonstrated infusion-related toxicities likely due to effector function elicited by the wild-type IgG backbone. To address this issue, we created anti-CD45 antibodies with reduced Fc-gamma receptor binding that prevented cytokine release in vitro and in humanized mice. As BMT will likely require fast clearing ADCs to avoid depleting the incoming graft, we also created fast-half-life CD45-AM variants with a t½ of 8-15 hours in mice. To determine the safety and pharmacokinetic properties of regular and fast half-life Fc-silent variants in an immune-competent large animal we tested these in cynomolgus monkeys. Single doses (3 mg/kg, iv, n = 3/group) of fast and regular half-life Fc-silent unconjugated anti-CD45 antibodies were both well tolerated in cynomolgus monkeys and displayed pharmacokinetic properties suitable for BMT. Conclusion These results demonstrate that targeting CD45 with an amanitin ADC results in potent in vitro and in vivo human HSC and immune cell depletion. This new CD45-AM ADC also significantly reduced disease burden in multiple leukemia models. Our results indicate Fc-silencing may avoid infusion-related toxicities observed with previous CD45 mAbs. An alpha-amanitin ADC targeted to CD45 may be appropriate for preparing patients for BMT since we hypothesize it may i) be non-genotoxic; ii) effectively deplete both HSC and immune cells; iii) avoid bystander toxicity, due to amanitin's poor cell permeability as a free toxin; and iv) kill cycling and non-cycling cells, the latter being necessary for effective HSC depletion. As our anti-CD45 ADCs are cross-reactive, we are currently investigating their HSC and immune cell depletion activity in vivo in NHPs to enable further preclinical development of these transplant conditioning agents. Disclosures Palchaudhuri: Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties; Harvard University: Patents & Royalties. Pearse:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Proctor:Magenta Therapeutics: Employment, Equity Ownership. Hyzy:Magenta Therapeutics: Employment, Equity Ownership. Aslanian:Magenta Therapeutics: Employment, Equity Ownership. McDonough:Magenta Therapeutics: Employment, Equity Ownership. Sarma:Magenta Therapeutics: Employment, Equity Ownership. Brooks:Magenta Therapeutics: Employment, Equity Ownership. Bhat:Magenta Therapeutics: Employment. Ladwig:Magenta Therapeutics: Employment, Equity Ownership. McShea:Magenta Therapeutics: Employment, Equity Ownership. Kallen:Magenta Therapeutics: Employment, Equity Ownership. Li:Magenta Therapeutics: Employment, Equity Ownership. Panwar:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Dushime:Magenta Therapeutics: Employment, Equity Ownership. Sawant:Magenta Therapeutics: Employment, Equity Ownership. Adams:Magenta Therapeutics: Employment, Equity Ownership. Falahee:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Lamothe:Magenta Therapeutics: Employment, Equity Ownership. Gabros:Magenta Therapeutics: Employment, Equity Ownership. Kien:Magenta Therapeutics: Employment, Equity Ownership. Gillard:Magenta Therapeutics: Employment, Equity Ownership. McDonagh:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Boitano:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Cooke:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3492-3492 ◽  
Author(s):  
Douglas Drager ◽  
Sue Patarroyo-White ◽  
Hoson Chao ◽  
Ayman Ismail ◽  
Jiayun Liu ◽  
...  

Abstract All currently marketed Factor VIII (FVIII) molecules are administered intravenously (IV) for the treatment of hemophilia A (HemA). Conventional FVIII prophylaxis requires a dosing interval of three times per week to every other day. This frequent dosing regimen necessitates repeated venous access and is associated with complications such as secondary infection in children with a venous port/catheter. More recently, extended half-life variants of FVIII have been shown in clinical trials to decrease the dosing interval to twice weekly or less frequent IV dosing, which reduces, but does not eliminate, the burden of treatment. A FVIII molecule with further prolonged half-life and subcutaneous (SQ) delivery potential could significantly relieve the treatment burden for HemA patients and improve the adherence rate to FVIII prophylaxis. Recombinant FVIIIFc-VWF-XTEN has been shown to not bind endogenous VWF, and is able to achieve a 4-fold extension of half-life in hemophilia A mice compared to conventional FVIII, well beyond the approximately 2-fold half-life extension limit demonstrated by other long-acting FVIII variants that bind endogenous VWF. It comprises of two polypeptide chains: 1) a single chain B-domain deleted FVIIIFc-XTEN chain with a XTEN polypeptide inserted at the B-domain region of native FVIII sequence, and 2) a VWF D'D3-XTEN-Fc chain xtend one that n TEN fragemnt o FVIII prophylaxis.ntial rity of the patients depending on the half-life of the FVIII molecule. with a second XTEN polypeptide inserted between D'D3 domain and Fc. The rFVIIIFc-VWF-XTEN protein was produced in HEK293 cells and affinity purified using VIIISelect resin. The pharmacokinetic (PK) profiles of intravenously (IV) and subcutaneously (SQ) administered rFVIIIFc-VWF-XTEN were compared to those of rFVIII in HemA mice. The duration of the in vivo efficacy of rFVIIIFc-VWF-XTEN post-SQ delivery was assessed in a HemA mouse tail vein transection (TVT) bleeding model. After intravenous dosing in HemA mice, we observed a linear PK profile for rFVIIIFc-VWF-XTEN within the therapeutic dose range (25, 50, 100 IU/kg). The half-life of IV-administered rFVIIIFc-VWF-XTEN was about 37 h, which is more than 4-fold longer than that of rFVIII. In addition, animals that received 25 IU/kg of rFVIIIFc-VWF-XTEN treatment retained 5% of normal FVIII activity at 120 h post-dosing, which suggests the potential for full protection from spontaneous bleeding in this animal model. When delivered subcutaneously, the bioavailability of rFVIIIFc-VWF-XTEN was 20%, a significant increase compared to the bioavailability of rFVIII (less than 1%). Starting at 24 h post-dosing, subcutaneous administration of rFVIIIFc-VWF-XTEN achieved plasma FVIII levels that were equal to or greater than those attained with rFVIII delivered intravenously at the same dose. In addition, greater than 5% of normal circulating FVIII level was observed at 96 h post SQ administration of rFVIIIFc-VWF-XTEN with a 100 IU/kg dose, which provided 80% protection on survival in mice subjected to tail vein transection injury. These results suggest that rFVIIIFc-VWF-XTEN could enable less frequent FVIII replacement treatment compared to rFVIII even when administered subcutaneously. The VWF independence of rFVIIIFc-VWF-XTEN enables a 4-fold increase in circulating half-life compared to that of rFVIII. Also, the addition of D'D3 domains and the two XTEN insertions dramatically increases subcutaneous bioavailability to 20%, compared to less than 1% with conventional FVIII. These unique properties of rFVIIIFc-VWF-XTEN make it a potential candidate for both IV and SQ treatments for hemophilia A. Disclosures Drager: Biogen: Employment, Equity Ownership. Patarroyo-White:Biogen: Employment, Equity Ownership. Chao:Biogen: Employment, Equity Ownership. Ismail:Biogen: Employment. Liu:Biogen: Employment, Equity Ownership. Holthaus:Biogen: Employment. Chhabra:Biogen: Employment, Equity Ownership. Kulman:Biogen: Employment. Schellenberger:Amunix Operating Inc: Employment. Liu:Biogen: Employment, Equity Ownership. Peters:Biogen: Employment.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2345-2345
Author(s):  
Siyuan Tan ◽  
Kai Chen ◽  
Joe Salas ◽  
Robert Peters ◽  
David R. Light ◽  
...  

Abstract Treatment of bleeding episodes in hemophilia patients with inhibitory antibodies to factor VIII or factor IX by recombinant activated factor VII (rFVIIa, NovoSeven) has been sub-optimal partly due to its low affinity to activated platelets and its short half-life in circulation. To develop a rFVIIa variant with enhanced coagulant activity, we have targeted rFVIIa to platelets by monoclonal antibodies that recognize the human platelet receptor αIIbβ3. However, the assessment of pharmacokinetic parameters in mice is limited by the lack of recognition of mouse αIIbβ3 by antibodies to human αIIbβ3. The present study addresses the need to develop appropriate in vivo models to study this new class of bypass therapeutics. First, we evaluated the survival of human platelets in hemophilia A, NOD/SCID, and NOD/SCID/gamma (NSG) mice. Platelet concentrates were prepared from normal human donors and transfused retro-orbitally into mice. The whole blood from dosed mice was then collected via tail vein laceration at various times and the human platelet counts in blood was determined by flow cytometry after staining with fluorescently labeled antibodies against human CD42b, mouse CD61, human FVII to visualize the human platelets, mouse platelets, and the FVIIa candidate that bound to human platelets, respectively. The half-life of human platelets in NOD/scid/gamma (NSG) mice was approximately 4 hours, which is considerably longer than the 0.8 hour half-life observed in hemophilia A mice. The effect of platelet-targeted FVIIa variants on the clearance of human platelets was then investigated in NSG mice. The FVIIa candidates were pre-selected for their inactivity toward human platelet activation and aggregation, as determined in a battery of in vitro assays. In agreement with the in vitro results, all of these selected candidates did not affect the clearance of the transfused human platelets when dosed in NSG mice at 5 nmol/kg. In contrast, a control antibody fusion protein that is known to activate platelets and cause thrombocytopenia in vivo led to rapid platelet clearance in NSG mice. Similar results were observed for these proteins in cynomolgous monkeys when dosed at 2 nmol/kg. The NSG mice with circulating human platelets were also explored to evaluate the clearance of FVIIa candidates that remain platelet-associated in vivo. To improve the pharmacokinetics, we have fused XTEN, a hydrophilic peptide that increases the dynamic radius of payload proteins, to the platelet-targeted FVIIa candidates. When tested in NSG mice model for the clearance of platelet-associated protein, addition of XTEN markedly reduced the clearance rate, resulting in several fold increase in exposure. Together these data indicate that NSG mice with circulating human platelets can be used to assess the safety and pharmacokinetics of the platelet-targeted FVIIa variants, and the method can be adapted to evaluate other agents designed to utilize platelet-targeting approaches. Disclosures: Tan: Biogen Idec: Employment, Equity Ownership. Chen:Biogen Idec: Employment, Equity Ownership. Salas:Biogen Idec: Employment, Equity Ownership. Peters:Biogen Idec: Employment, Equity Ownership. Light:Biogen Idec: Employment; Biogen Idec: Equity Ownership. Jiang:Biogen Idec: Employment; Biogen Idec: Equity Ownership.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 659-659
Author(s):  
Kevin A. Goncalves ◽  
Megan D. Hoban ◽  
Jennifer L. Proctor ◽  
Hillary L. Adams ◽  
Sharon L. Hyzy ◽  
...  

Abstract Background. The ability to expand human hematopoietic stem cells (HSCs) has the potential to improve outcomes in HSC transplantation and increase the dose of gene-modified HSCs. While many approaches have been reported to expand HSCs, a direct comparison of the various methods to expand transplantable HSCs has not been published and clinical outcome data for the various methods is incomplete. In the present study, we compared several small molecule approaches reported to expand human HSCs including HDAC inhibitors, the aryl hydrocarbon antagonist, SR1, and UM171, a small molecule with unknown mechanism, for the ability to expand phenotypic HSC during in vitro culture and to expand cells that engraft NSG mice. Although all strategies increased the number of phenotypic HSC (CD34+CD90+CD45RA-) in vitro, SR1 was the most effective method to increase the number of NOD-SCID engrafting cells. Importantly, we found that HDAC inhibitors and UM171 upregulated phenotypic stem cell markers on downstream progenitors, suggesting that these compounds do not expand true HSCs. Methods. Small-molecules, SR1, HDAC inhibitors (BG45, CAY10398, CAY10433, CAY10603, Entinostat, HC Toxin, LMK235, PCI-34051, Pyroxamide, Romidepsin, SAHA, Scriptaid, TMP269, Trichostatin A, or Valproic Acid) and UM171 were titrated and then evaluated at their optimal concentrations in the presence of cytokines (TPO, SCF, FLT3L, and IL6) for the ability to expand human mobilized peripheral blood (mPB)-derived CD34+ cells ex vivo . Immunophenotype and cell numbers were assessed by flow cytometry following a 7-day expansion assay in 10-point dose-response (10 µM to 0.5 nM). HSC function was evaluated by enumeration of colony forming units in methylcellulose and a subset of the compounds were evaluated by transplanting expanded cells into sub-lethally irradiated NSG mice to assess engraftment potential in vivo . All cells expanded with compounds were compared to uncultured or vehicle-cultured cells. Results. Following 7 days of expansion, SR1 (5-fold), UM171 (4-fold), or HDAC inhibitors (&gt;3-35-fold) resulted in an increase in CD34+CD90+CD45RA- number relative to cells cultured with cytokines alone; however, only SR1 (18-fold) and UM171 (8-fold) demonstrated enhanced engraftment in NSG mice. Interestingly, while HDAC inhibitors and UM171 gave the most robust increase in the number and frequency of CD34+CD90+CD45RA- cells during in vitro culture, these methods were inferior to SR1 at increasing NSG engrafting cells. The increase in CD34+CD90+CD45RA- cells observed during in vitro culture suggested that these compounds may be generating a false phenotype by upregulating CD90 and down-regulating CD45RA on progenitors that were originally CD34+CD90-CD45RA+. We tested this hypothesis by sorting CD34+CD90-CD45RA+ cells and culturing these with the various compounds. These experiments confirmed that both HDAC inhibitors (33-100 fold) and UM171 (28-fold) led to upregulation of CD90 on CD34+CD90-CD45RA+ cells after 4 days in culture. Since approximately 90% of the starting CD34+ cells were CD90-, these data suggest that most of the CD34+CD90+CD45RA- cells in cultures with HDAC inhibitors and UM171 arise from upregulation of CD90 rather than expansion of true CD34+CD90+CD45RA- cells and may explain the disconnect between in vitro HSC phenotype and NSG engraftment in vivo . This was further confirmed by evaluation of colony forming unit frequency of CD34+CD90-CD45RA+ cells after culture with compounds. Conclusions. We have showed that AHR antagonism is optimal for expanding functional human HSCs using the NSG engraftment model. We also demonstrated that UM171 and HDAC inhibitors upregulate phenotypic HSC markers on downstream progenitors. This could explain the discrepancy between impressive in vitro phenotypic expansion and insufficient functional activity in the NSG mouse model. Therefore, these data suggest caution when interpreting in vitro expansion phenotypes without confirmatory functional transplantation data, especially as these approaches move into clinical trials in patients. Disclosures Goncalves: Magenta Therapeutics: Employment, Equity Ownership. Hoban: Magenta Therapeutics: Employment, Equity Ownership. Proctor: Magenta Therapeutics: Employment, Equity Ownership. Adams: Magenta Therapeutics: Employment, Equity Ownership. Hyzy: Magenta Therapeutics: Employment, Equity Ownership. Boitano: Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Cooke: Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1844-1844
Author(s):  
John Richards ◽  
Myriam N Bouchlaka ◽  
Robyn J Puro ◽  
Ben J Capoccia ◽  
Ronald R Hiebsch ◽  
...  

AO-176 is a highly differentiated, humanized anti-CD47 IgG2 antibody that is unique among agents in this class of checkpoint inhibitors. AO-176 works by blocking the "don't eat me" signal, the standard mechanism of anti-CD47 antibodies, but also by directly killing tumor cells. Importantly, AO-176 binds preferentially to tumor cells, compared to normal cells, and binds even more potently to tumors in their acidic microenvironment (low pH). Hematological neoplasms are the fourth most frequently diagnosed cancers in both men and women and account for approximately 10% of all cancers. Here we describe AO-176, a highly differentiated anti-CD47 antibody that potently targets hematologic cancers in vitro and in vivo. As a single agent, AO-176 not only promotes phagocytosis (15-45%, EC50 = 0.33-4.1 µg/ml) of hematologic tumor cell lines (acute myeloid leukemia, non-Hodgkin's lymphoma, multiple myeloma, and T cell leukemia) but also directly targets and kills tumor cells (18-46% Annexin V positivity, EC50 = 0.63-10 µg/ml) in a non-ADCC manner. In combination with agents targeting CD20 (rituximab) or CD38 (daratumumab), AO-176 mediates enhanced phagocytosis of lymphoma and multiple myeloma cell lines, respectively. In vivo, AO-176 mediates potent monotherapy tumor growth inhibition of hematologic tumors including Raji B cell lymphoma and RPMI-8226 multiple myeloma xenograft models in a dose-dependent manner. Concomitant with tumor growth inhibition, immune cell infiltrates were observed with elevated numbers of macrophage and dendritic cells, along with increased pro-inflammatory cytokine levels in AO-176 treated animals. When combined with bortezomib, AO-176 was able to elicit complete tumor regression (100% CR in 10/10 animals treated with either 10 or 25 mg/kg AO-176 + 1 mg/kg bortezomib) with no detectable tumor out to 100 days at study termination. Overall survival was also greatly improved following combination therapy compared to animals treated with bortezomib or AO-176 alone. These data show that AO-176 exhibits promising monotherapy and combination therapy activity, both in vitro and in vivo, against hematologic cancers. These findings also add to the previously reported anti-tumor efficacy exhibited by AO-176 in solid tumor xenografts representing ovarian, gastric and breast cancer. With AO-176's highly differentiated MOA and binding characteristics, it may have the potential to improve upon the safety and efficacy profiles relative to other agents in this class. AO-176 is currently being evaluated in a Phase 1 clinical trial (NCT03834948) for the treatment of patients with select solid tumors. Disclosures Richards: Arch Oncology Inc.: Employment, Equity Ownership, Other: Salary. Bouchlaka:Arch Oncology Inc.: Consultancy, Equity Ownership. Puro:Arch Oncology Inc.: Employment, Equity Ownership. Capoccia:Arch Oncology Inc.: Employment, Equity Ownership. Hiebsch:Arch Oncology Inc.: Employment, Equity Ownership. Donio:Arch Oncology Inc.: Employment, Equity Ownership. Wilson:Arch Oncology Inc.: Employment, Equity Ownership. Chakraborty:Arch Oncology Inc.: Employment, Equity Ownership. Sung:Arch Oncology Inc.: Employment, Equity Ownership. Pereira:Arch Oncology Inc.: Employment, Equity Ownership.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2744-2744
Author(s):  
Xiaochuan Chen ◽  
Rhona Stein ◽  
Chien-Hsing Chang ◽  
David M. Goldenberg

Abstract Abstract 2744 Poster Board II-720 Introduction: The humanized anti-CD74 monoclonal antibody (mAb), milatuzumab, is in clinical evaluation as a therapeutic mAb for non-Hodgkin lymphoma, chronic lymphocytic leukemia (CLL), and multiple myeloma after preclinical evidence of activity in these tumor types. In addition to its expression in malignant cells, CD74 is also expressed in normal B cells, monocytes, macrophages, Langerhans cells, follicular and blood dendritic cells. A question therefore arises whether milatuzumab is toxic to or affects the function of these immune cells. This has important implications, not only for safe therapeutic use of this mAb, but also for its potential application as a novel delivery modality for in-vivo targeted vaccination. Methods: We assessed the binding profiles and functional effects of milatuzumab on human antigen-presenting cell (APC) subsets. Studies on the effect of milatuzumab on antigen presentation and cross-presentation are included. In addition, binding and cytotoxicity on a panel of leukemia/lymphoma cell lines and CLL patient cells were tested to demonstrate the range of malignancies that can be treated with this mAb. Results: Milatuzumab bound efficiently to different subsets of blood dendritic cells, including BDCA-1+ myeloid DCs (MDC1), BDCA-2+ plasmacytoid DCs (PDC), BDCA-3+ myeloid DCs (MDC2), B lymphocytes, monocytes, and immature DCs derived from human monocytes in vitro, but not LPS-matured DCs, which correlated well with their CD74 expression levels. In the malignant B-cells tested, milatuzumab bound to the surface of 2/3 AML, 2/2 mantle cell (MCL), 4/4 ALL, 1/1 hairy cell leukemia, 2/2 CLL, 7/7 NHL, and 5/6 multiple myeloma cell lines, and cells of 4/6 CLL patient specimens. Significant cytotoxicity (P<0.05) was observed in 2/2 MCL, 2/2 CLL, 3/4 ALL, 1/1 hairy cell, 2/2 NHL, and 2/2 MM cell lines, and 3/4 CD74-positive CLL patient cells, but not in the AML cell lines following incubation with milatuzumab. In contrast, milatuzumab had minimal effects on the viability of DCs or B cells that normally express CD74. The DC maturation and DC-mediated T-cell functions were not altered by milatuzumab treatment, which include DC-induced T-cell proliferation, CD4+CD25+FoxP3+ Treg expansion, and CD4+ naïve T-cell polarization. Moreover, milatuzumab had little effect on CMV-specific CD8- and CD8+ T cell interferon-g responses of peripheral blood mononuclear cells stimulated in vitro with CMV pp65 peptides or protein, suggesting that milatuzumab does not influence antigen presentation or cross-presentation. Conclusion: These results demonstrate that milatuzumab is a highly specific therapeutic mAb against B-cell malignancies with potentially minimal side effects. It also suggests that milatuzumab may be a promising novel delivery mAb for in vivo targeted vaccinations, given its efficient binding, but lack of cytotoxicity and functional disruption on CD74-expressing normal APCs. (Supported in part by NIH grant PO1-CA103985.) Disclosures: Chang: Immunomedics Inc.: Employment, Equity Ownership, Patents & Royalties. Goldenberg:Immunomedics, Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 191-191
Author(s):  
Richard W. Scott ◽  
Michael J. Costanzo ◽  
Katie B. Freeman ◽  
Robert W. Kavash ◽  
Trevor M. Young ◽  
...  

Abstract Abstract 191 A series of salicylamides, fully synthetic cationic foldamers designed to disrupt the binding of the pentasaccharide unit of heparin to antithrombin III, were found to be potent neutralizers of the activity of unfractionated heparin (UFH) and low molecular weight heparins (LMWHs). A compound from this series, PMX-60056, is currently in human clinical trials for neutralization of UFH and LMWHs. PMX-60056 potently neutralizes UFH and LMWHs but is not as efficacious versus fondaparinux (FPX). The goal of the present research was to 1) identify back-up compounds to optimize activity against the LMWHs and FPX and 2) mitigate the hemodynamic effects commonly associated with protamine and observed clinically with PMX-60056 in the absence of heparin. Compounds were first tested for their ability to neutralize the anticoagulant activity of enoxaparin (ENX), tinzaparin or FPX in an in vitro amidolytic assay for factor Xa activity. While only minor improvements were observed in the neutralization of ENX and tinzaparin, compounds were identified which had 6 to 40 fold increase in activity against FPX (EC50s of 0.09 – 0.58 uM) in comparison to PMX-60056 (EC50 3.64 uM). Activated partial thromboplastin time (aPTT) assays demonstrated that these compounds maintained activity against heparin in a plasma based clotting assay. Rotation thromboelastometry (ROTEM) was used to show that these compounds are able to neutralize heparin and ENX in human whole blood, restoring normal coagulation profiles. As an initial test for safety, compounds were tested in hemolysis and cytotoxicity assays using isolated human erythrocytes, a transformed human liver cell line (HepG2 cells) and a mouse fibroblast cell line (NIH3T3). Lead back-up compounds were not cytotoxic (or hemolytic) at >100 fold concentrations over their EC50 concentrations in the anti-coagulation assays, indicating a high selectivity index between toxicity and efficacy. Five compounds were selected for further studies based on their in vitro profiles. The in vivo efficacy of these compounds was evaluated in a rat coagulation model for neutralization of ENX (2 mg/kg). Three minutes following IV dosing with ENX, either saline, protamine or one of the five salicylamide test compounds was administered. Blood was collected before dosing with ENX, and at 1, 3, 10, and 60 min after dosing, for aPTT and factor Xa analysis. Three of the five salicylamides (PMX640, PMX686 and PMX747) were more efficacious than protamine; with PMX640 and PMX686 neutralizing 91 – 100% and PMX747 neutralizing 78–100% of the ENX anti-factor Xa activity over the entire 60 minute time course. In a second in vivo model, PMX747 and PMX686 (2 mg/kg) completely neutralized the prolonged bleeding times in a rat tail bleeding model caused by treatment with 2 mg/kg ENX. Significantly, with protamine at a 5 mg/kg dosage, only partial restoration was obtained. Protamine routinely causes a transient decrease in blood pressure upon dosing, and hemodynamic effects have also been observed with PMX-60056 in human subjects in the absence of heparin. To address this issue, structural features that have successfully reduced hemodynamic liabilities in other cationic compounds were incorporated into the design of the back-up salicylamides. The effect of compounds on blood pressure and heart rate was measured via arterial catheters in rats following IV administration of protamine, PMX-60056, or test agents. As expected, in rats treated with a low dose of UFH (50 u/kg) and high dosages of antagonist, both protamine and PMX-60056 displayed transient or prolonged blood pressure reductions at 8 and 16 mg/kg, respectively. However, the lead back-up salicylamides, PMX640, PMX686 and PMX747 had little to no effect on blood pressure at these same dosages. In conclusion, we have discovered compounds in the salicylamide series that have greater efficacy versus LMWHs and that have significantly reduced hemodynamic liabilities in rats as compared to protamine. Furthermore, these compounds potently neutralize FPX activity in vitro; exceeding the activity of protamine and our clinical lead salicylamide, PMX-60056, by up to 40 fold. Thus we have been able to optimize the salicylamide series, identifying compounds that offer the potential to greatly improve upon the current clinical heparin antagonist, protamine, in respect to both activity against LMWHs and side effect profile. Disclosures: Scott: PolyMedix Inc.: Employment, Equity Ownership. Costanzo:PolyMedix Inc.: Employment, Equity Ownership. Freeman:PolyMedix Inc.: Employment, Equity Ownership. Kavash:PolyMedix Inc.: Employment, Equity Ownership. Young:PolyMedix, Inc.: Employment, Equity Ownership. DeGrado:PolyMedix, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Jeske:PolyMedix, Inc.: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 580-580
Author(s):  
Mark Wunderlich ◽  
Mahesh Shrestha ◽  
Lin Kang ◽  
Eric Law ◽  
Vladimir Jankovic ◽  
...  

Abstract Abstract 580 Generating a large number of pure, functional immune cells that can be used in human patients has been a major challenge for NK cell-based immunotherapy. We have successfully established a cultivation method to generate human NK cells from CD34+ cells isolated from donor-matched cord blood and human placental derived stem cells, which were obtained from full-term human placenta. This cultivation method is feeder-free, based on progenitor expansion followed by NK differentiation supported by cytokines including thrombopoietin, stem cell factor, Flt3 ligand, IL-7, IL-15 and IL-2. A graded progression from CD34+ hematopoietic progenitor cells (HSC) to committed NK progenitor cells ultimately results in ∼90% CD3-CD56+ phenotype and is associated with an average 10,000-fold expansion achieved over 35 days. The resulting cells are CD16- and express low level of KIRs, indicating an immature NK cell phenotype, but show active in vitro cytotoxicity against a broad range of tumor cell line targets. The in vivo persistence, maturation and functional activity of HSC-derived NK cells was assessed in NSG mice engineered to express the human cytokines SCF, GM-CSF and IL-3 (NSGS mice). Human IL-2 or IL-15 was injected intraperitoneally three times per week to test the effect of cytokine supplementation on the in vivo transferred NK cells. The presence and detailed immunophenotype of NK cells was assessed in peripheral blood (PB), bone marrow (BM), spleen and liver samples at 7-day intervals up to 28 days post-transfer. Without cytokine supplementation, very few NK cells were detectable at any time-point. Administration of IL-2 resulted in a detectable but modest enhancement of human NK cell persistence. The effect of IL-15 supplementation was significantly greater, leading to the robust persistence of transferred NK cells in circulation, and likely specific homing and expansion in the liver of recipient mice. The discrete response to IL-15 versus IL-2, as well as the preferential accumulation in the liver have not been previously described following adoptive transfer of mature NK cells, and may be unique for the HSC-derived immature NK cell product. Following the in vivo transfer, a significant fraction of human CD56+ cells expressed CD16 and KIRs indicating full physiologic NK differentiation, which appears to be a unique potential of HSC-derived cells. Consistent with this, human CD56+ cells isolated ex vivo efficiently killed K562 targets in in vitro cytotoxicity assays. In contrast to PB, spleen and liver, BM contained a substantial portion of human cells that were CD56/CD16 double negative (DN) but positive for CD244 and CD117, indicating a residual progenitor function in the CD56- fraction of the CD34+ derived cell product. The BM engrafting population was higher in NK cultures at earlier stages of expansion, but was preserved in the day 35- cultured product. The frequency of these cells in the BM increased over time, and showed continued cycling based on in vivo BrdU labeling 28 days post-transfer, suggesting a significant progenitor potential in vivo. Interestingly, DN cells isolated from BM could be efficiently differentiated ex vivo to mature CD56+CD16+ NK cells with in vitro cytotoxic activity against K562. We speculate that under the optimal in vivo conditions these BM engrafting cells may provide a progenitor population to produce a mature NK cell pool in humans, and therefore could contribute to the therapeutic potential of the HSC-derived NK cell product. The in vivo activity of HSC-derived NK cells was further explored using a genetically engineered human AML xenograft model of minimal residual disease (MRD) and initial data indicates significant suppression of AML relapse in animals receiving NK cells following chemotherapy. Collectively, our data demonstrate the utility of humanized mice and in vivo xenograft models in characterizing the biodistribution, persistence, differentiation and functional assessment of human HSC-derived cell therapy products, and characterize the potential of HSC-derived NK cells to be developed as an effective off-the-shelf product for use in adoptive cell therapy approaches in AML. Disclosures: Wunderlich: Celgene Cellular Therapeutics: Research Funding. Shrestha:C: Research Funding. Kang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Law:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Jankovic:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Zhang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Herzberg:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Abbot:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Hariri:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Mulloy:Celgene Cellular Therapeutics: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4412-4412 ◽  
Author(s):  
Deepak Sampath ◽  
Sylvia Herter ◽  
Frank Herting ◽  
Ellen Ingalla ◽  
Michelle Nannini ◽  
...  

Introduction Obinutuzumab (GA101) is a novel glycoengineered type II, anti-CD20 monoclonal antibody induces a high level of direct cell death. As a result of glycoengineering, GA101 has increased affinity for FcgRIIIa on effector cells resulting in enhanced direct cell death and ADCC induction. GA101 is currently in pivotal clinical trials in CLL, indolent NHL and DLCBL. ABT-199 (GDC-0199) is a novel, orally bioavailable, selective Bcl-2 inhibitor that induces robust apoptosis in preclinical models of hematological malignancies and is currently in clinical trials for CLL, NHL and MM. Based on their complementary mechanisms of action involving increased apoptosis (GDC-0199) or direct cell death (GA101) the combination of anti-CD20 therapy with a Bcl-2 inhibitor has the potential for greater efficacy in treating B lymphoid malignancies. Experimental Methods The combination of GA101 or rituximab with GDC-0199 was studied in vitro utilizing assays that measure direct cell death induction/apoptosis (AxV/Pi positivity) on WSU-DLCL2, SU-DHL4 DLBCL and Z138 MCL cells by FACS and the impact of Bcl-2 inhibition on ADCC induction. In vivo efficacy of the combination of GA101 or rituximab and GDC-0199 was evaluated in SU-DHL4 and Z138 xenograft models. Results GA101 and rituximab enhanced cell death induction when combined with GDC-0199 in SU-DHL4, WSU-DLCL2 and Z138 cell lines. When combined at optimal doses an additive effect of the two drugs was observed. GDC-0199 did not negatively impact the capability of GA101 or rituximab to induce NK-cell mediated ADCC. Combination of GDC-0199 and GA101 induced a greater than additive anti-tumor effects in the SU-DHL4 and Z138 xenograft models resulting in tumor regressions and delay in tumor regrowth when compared to monotherapy. Moreover, continued single-agent treatment with GDC-0199 after combination with GA101 resulted in sustained in vivo efficacy in the SU-DHL4 model. Conclusions Our data demonstrate that the combination of GA101 with GDC-0199 results in enhanced cell death and robust anti-tumor efficacy in xenograft models representing NHL sub-types that is comparable to the combination of rituximab with GDC-0199. In addition, single-agent treatment with GDC-0199 following combination with GA101 sustains efficacy in vivo suggesting a potential benefit in continued maintenance therapy with GDC-0199. Collectively the preclinical data presented here supports clinical investigation of GA101 and GDC-0199 combination therapy, which is currently in a phase Ib clinical trial (clinical trial.gov identifier NCT01685892). Disclosures: Sampath: Genentech: Employment, Equity Ownership. Herter:Roche: Employment. Herting:Roche: Employment. Ingalla:Genentech: Employment. Nannini:Genentech: Employment. Bacac:Roche: Employment. Fairbrother:Genentech: Employment, Equity Ownership. Klein:Roche Glycart AG: Employment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3059-3059 ◽  
Author(s):  
Dan T. Vogl ◽  
Anas Younes ◽  
Keith Stewart ◽  
Keith William Orford ◽  
Mark Bennett ◽  
...  

Abstract Background: Malignant cells alter metabolism in order to enable their highly anabolic state. In addition to a massive increase in glycolysis, malignant cells frequently become dependent on glutamine to feed the TCA cycle and provide key building blocks for cell growth and proliferation. CB-839 is a first-in-class potent and selective inhibitor of glutaminase (GLS), the first step in glutamine metabolism, that has broad in vitro and in vivo anti-tumor activity in solid and heme malignancies, including multiple myeloma. GLS inhibition with CB-839 induces apoptosis and/or growth arrest in multiple myeloma and lymphoma cell lines and is synergistic with pomalidomide and lenalidomide in vitro and as well as in multiple myeloma xenograft models in vivo. Methods: CX-839-002 is an ongoing Ph1 evaluation of escalating doses of CB-839 in patients with relapsed/refractory multiple myeloma (MM) or non-Hodgkins lymphoma (NHL) with the primary objective of assessing the safety profile and selecting a recommended Phase 2 dose (RP2D). Pharmacokinetics (PK) was monitored on Days 1 and 15. Initially, CB-839 was given three times daily (TID) without food, but based on PK and safety data generated across three Ph1 studies in patients with solid and heme malignancies, the drug is now being given twice daily (BID) with meals. Results: Safety data are available for a total of 14 patients (9 MM, 4 follicular lymphoma, 1 diffuse large B cell lymphoma) that have enrolled to date during the dose escalation (100-400 mg TID and 600 mg BID). The patients have received a median of 7 prior lines of systemic therapy. CB-839 has been well tolerated with only three subjects experiencing a Gr3/4 AEs considered possibly related to study drug and there have been no discontinuations due to AEs. A similar tolerability profile has been observed across three Ph1 studies for CB-839. With a total of 119 pts treated with CB-839 across the three studies, Gr3/4 drug-related AEs have occurred in 16 subjects (13%) and 4.3% of discontinuations were due to AEs. Reversible, asymptomatic elevations in transaminases have been the primary Gr3 AEs, occurring primarily on the TID schedule in 6/59 (10.2%) pts; only one occurred among 60 pts (1.7%) receiving the BID regimen. BID dosing with 600 mg was determined to be the RP2D and combination studies with pomalidomide and dexamethasone have been initiated. The half-life of CB-839 is ~4 hr, exposure increases with dose, and trough concentrations generally remain above the target threshold of 200 ng/mL for patients receiving the RP2D. Six of 8 MM pts that received ≥ 400 mg TID achieved steady state (D15) trough concentrations above the PK target threshold while 0 of 5 pts that received ≤ 250 mg TID achieved the PK threshold. Pharmacodynamic assessment of GLS activity in MM patients was consistent with a broader PK/PD assessment (across all 3 Ph1 studies), which established clear exposure-dependent inhibition of the target in peripheral blood platelets 4 hr after the first dose of CB-839, with >90% inhibition being maintained for most patients at the RP2D. Preliminary efficacy data include confirmed stable disease in 4 of 9 evaluable MM patients. Updated efficacy data and correlative studies on clinical samples will also be presented. The first pt treated with the combination of CB-839 and pomalidomide/dexamethasone (Pd) during dose escalation received 400 mg CB-839 BID, pomalidomide at 4 mg/day (D1-21) and dexamethasone at 40 mg on Days 1, 8, 15 and 22 of each 28-day cycle. This pt had a 71% decreased in urine M-protein and an 83% reduction in serum free light chain after the first 2 cycles of treatment. This pt had 11 prior lines of therapy but not pomalidomide and had two stem cell transplants and was progressing rapidly prior to study entry. The pt has tolerated the combination well and is continuing on study. Conclusions: CB-839 has been well tolerated at and above doses that produced robust inhibition of GLS in blood platelets and in tumors. Dosing BID with food has improved the PK profile and mitigated the frequency and severity of LFT elevations, which was the primary safety signal using TID dosing. Strong preclinical combination data, an excellent clinical safety profile, and initial data with CB-839 combined with Pd provide a strong rationale for continued development of CB-839 this combination in pts with relapsed/refractory multiple myeloma. Disclosures Vogl: Constellation Pharmaceuticals: Research Funding; Calithera Biosciences: Research Funding; Celgene Corporation: Consultancy; Acetylon Pharmaceuticals, Inc.: Research Funding; Millennium Pharmaceuticals: Research Funding; GSK: Research Funding. Younes:Celgene: Honoraria; Curis: Research Funding; Sanofi-Aventis: Honoraria; Seattle Genetics: Honoraria, Research Funding; Novartis: Research Funding; Janssen: Honoraria; Takeda Millenium: Honoraria; Bristol Meyer Squibb: Honoraria; Bayer: Honoraria; Incyte: Honoraria; Johnson and Johnson: Research Funding. Orford:Calithera Biosciences: Employment, Equity Ownership. Bennett:Calithera Biosciences: Employment, Equity Ownership. Siegel:Celgene Corporation: Consultancy, Speakers Bureau; Amgen: Speakers Bureau; Takeda: Speakers Bureau; Novartis: Speakers Bureau; Merck: Speakers Bureau. Berdeja:Curis: Research Funding; Acetylon: Research Funding; Novartis: Research Funding; Janssen: Research Funding; Takeda: Research Funding; BMS: Research Funding; Array: Research Funding; MEI: Research Funding; Abbvie: Research Funding; Celgene: Research Funding; Onyx: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document