A 20 Gene Expression Signature That Predicts Early Molecular Response Failure in Chronic Phase CML Patients Treated with Frontline Imatinib

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 596-596 ◽  
Author(s):  
Chung Hoow Kok ◽  
Tamara M Leclercq ◽  
Dale Watkins ◽  
David T Yeung ◽  
Verity A Saunders ◽  
...  

Abstract BACKGROUND: In chronic phase chronic myeloid leukemia (CP-CML) patients treated with frontline imatinib, failure to achieve early molecular response (EMR failure: BCR-ABL1 >10% at 3 months) predicts for subsequent inferior outcomes. Identifying patients at high-risk of EMR failure provides an opportunity to improve outcomes by personalising treatment at the time of diagnosis, as intervention after EMR failure may be less effective. AIM: To utilise a predictive gene signature to identify CP-CML patients at diagnosis, who are at high risk of EMR failure and inferior clinical outcomes. METHODS: Peripheral blood mononuclear cells collected from 119 patients enrolled in the TIDEL-II study were subjected to gene expression microarray profiling (GEP) Illumina HT12. Validations of the identified microarray genes were performed using Taqman qPCR. All patients commenced imatinib treatment, and switched to nilotinib with or without an antecedent trial of high dose imatinib if they failed to achieve time dependent molecular targets. Clinical outcomes included EMR and cumulative incidence of MMR and MR4.5 (BCR-ABL1 ≤0.1% and ≤0.0032% on the international scale, respectively), and comparisons were made using Fine and Gray test. Competing risks included permanent trial discontinuation for any reason (including death or progression). Event-free survival (EFS) and failure-free survival (FFS) were performed using Kaplan-Meier and comparisons were made using the log-rank test. RESULTS: Fourteen of the 119 patients demonstrated EMR failure (12%). Comparing the GEP of these patients with those that achieved EMR identified 4456 aberrantly expressed genes in the EMR failure group. This gene set was significantly enriched for stem cell phenotype/signalling (e.g. Myc, β-catenin, Hoxa9/Meis1), cell cycle, and reduced immune response pathways associated with adverse prognosis in other cancers. From these genes, 20 genes (IGFBP2, CD3E, RASGRP1, BNIP3L, ETS1, PDK1, METTL7A, HECA, COL8A2, PRSS57, TMEM167A, SPAST, FZD7, VPS41, CDKN1B, CPXM1, SEPT7, RPS28, SLX4IP, and SRSF11) validated by qPCR were selected by nearest shrunken centroid model as the high-risk gene expression signature (high-riskGES) to predict EMR failure. Patients who had a high-riskGES exhibited significantly higher rates of EMR failure compared to those with low-riskGES (training cohort: 73.3% vs 8.0%; p<0.0001; n=40, Hazard Ratio (HR): 4.1). This was validated on an independent patient cohort (validation cohort: 50.0% vs 14.8%; p=0.018; n=39; HR: 3.2). Overall, when both cohorts were combined, patients who had a high-riskGES exhibited significantly higher rates of EMR failure compared to those with low-riskGES (63.0% vs 11.5%; p<0.0001; n=79, HR: 3.3; Figure 1A). The overall prediction accuracy of the signature was 80% (82% specificity, 74% sensitivity). Additionally, patients with a high-riskGES demonstrated significantly worse clinical outcome than those with low-riskGES by 24 months (MMR: 41% vs 83%, p=0.0003; MR4.5: 4% vs 42%, p=0.0004; EFS: 52% vs 92%, p<0.0001; FFS: 44% vs 89%, p<0.0001) (Figure 1B-E). This high-riskGES was confirmed as an independent predictor for EMR failure, when Sokal, age and gender were added as covariates based on the Cox-proportional multivariate analysis (HR: 0.34, p=0.003). Patients who had a high-riskGES also had significant inferior outcomes even if they subsequently achieved EMR, compared to the low-riskGES patient group that subsequently achieved EMR (MR4.5: 10% vs 48%, p=0.034; EFS: 68% vs 96%, p=0.0099; FFS: 60% vs 91%, p=0.011). Furthermore, this 20-gene signature compared favourably to Sokal, EUTOS, Hasford, and OCT-1 Activity in predicting EMR failure based on assessing their respective overall performance F -score (harmonic mean of precision and sensitivity). EMR failure was observed in 15% (n=33) of low Sokal score patients overall and 12% of the low-riskGES group (n=49) but amongst patients who had both low-riskGES and a low Sokal score, 0/25 experienced EMR failure. SUMMARY: For the first time in the CML setting, we have identified and validated a 20-gene signature to predict, at the time of diagnosis, patients at high risk of EMR failure and subsequent inferior clinical outcomes. The ability to predict high risk patients at diagnosis may facilitate the assessment of novel therapeutic approaches designed to improve clinical outcomes for patients with aggressive disease. Disclosures Yeung: BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. White:Novartis: Honoraria, Research Funding; BMS: Honoraria, Research Funding. Hughes:ARIAD: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2776-2776 ◽  
Author(s):  
Valentín García-Gutierrez ◽  
Maria Teresa Gómez Casares ◽  
Jimenez Velasco Antonio ◽  
Alonso Juan Manuel ◽  
Santiago Osorio ◽  
...  

Abstract INTRODUCTION: In chronic myeloid leukemia (CML) patients in chronic phase (CML-CP), BCR-ABL levels ≤10% at 3 months measured by RT-qPCR (IS) has been consistently correlated with probabilities to obtain an optimal response at 12 months. Monitoring molecular response with automated cartridge-based detection system GeneXpert BCR-ABL (Cepheid®) method has shown an optimal correlation with standardized BCR-ABL (IS) EUTOS method in patients with complete cytogenetic response (CCyR). However, is not known if both methods are also equivalent when measuring BCR-ABL levels above 1%, and therefore, the utility of GeneXpert in order to evaluate response at 3 months must be confirmed. AIMS: To validate the predictive value of molecular response at 3 months with GeneXpert method METHODS: We have studied 125 new consecutive CML-CP patients treated with tyrosine kinase inhibitors (TKIs) followed in 13 centers. Median age at diagnosed was 55 years. The percentage of low, intermediate and high risk Sokal groups were 42%, 40% and 18% . First line treatment was imatinib (IM), nilotinib (NI), dasatinib (DA) or bosutinib (BO) in 58%, 28%, 13% and 1% of the patients, respectively. BCR-ABL level was measured by GeneXpert platform, where all necessary steps to measure BCR-ABL levels are automatically performed. ABL was used as gene control. The study was approved by the Ethics Committee. RESULTS: Median follow up was 43 months. The proportion of patients that achieved CCyR by 12 months, analyzed by intention to treat, was 84% (108/123). Probabilities for each specific TKI were 78%, 93%, 100% and 100% for IM, NI, DA and BO respectively. 23% (96/125) of patients required treatment changed due to resistance or intolerance. Treatment discontinuation probabilities were 32%, 11%, 5% and 0% for IM, NI, DA and BO respectively. Only 4% (5/125) did not achieve an optimal response at 3 months (BCR-ABL ≤10%), which is significant lower compare to results obtain with historical series when using EUTOS IS method. 10% cut-off at 3 month was unable to identify patients that achieved an optimal response in further evaluations. By 12 months, this cutoff did not correlate with probabilities to obtain CCyR (50% vs 86% (p=0.1) or major molecular response (MMR) (60% vs 79% (p=0.21)). In order to find a cutoff that could correlate with optimal response at 12 months, we used a receiver operating characteristic curve to identify the optimal cutoff in transcript level that would allow us to classify the patients as high risk or low risk with maximal sensitivity and specificity for each individual outcome. At 3 months, patients with transcript levels ≤ 1.6% had significantly better probabilities to obtain an optimal response by 12 months, with 81% and 94% sensitivity and specificity for CCyR. With this new cutoff, probabilities for CCyR and MMR at 12 months were 98% vs 54% (p<0.001) and 88% vs 56% (p<0.001) respectively (OR:. Finally, this cutoff has also been correlated with probability for treatment changed at any time (46% vs 16% (p=0.005)) CONCLUSIONS: The results of our study seem to show that the 10% threshold, commonly used to evaluate response at 3 months when using BCR-ABL (IS) EUTOS method, is not associated with probabilities to achieve further optimal responses when using the GeneXpert platform. We have shown how a new cutoff of 1,6% % at 3 months when using GeneXpert could better identify patients with lower risk to achieve an optimal response at 12 months. Disclosures García-Gutierrez: Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Steegmann:Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; BMS: Consultancy, Honoraria, Research Funding, Speakers Bureau; Pfizer: Consultancy, Honoraria, Research Funding, Speakers Bureau; Ariad: Consultancy, Honoraria, Research Funding, Speakers Bureau.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1728-1728
Author(s):  
Chung Hoow Kok ◽  
Sakrapee Paisitkriangkrai ◽  
David T Yeung ◽  
Liu Liu ◽  
Verity A Saunders ◽  
...  

Abstract Introduction. Imatinib has revolutionised the treatment of chronic phase-chronic myeloid leukemia (CP-CML), with up to 70% of patients (pts) achieving major molecular response (MMR, BCR-ABL1 < 0.1% IS). Achievement of MMR by 2 years (yrs) is associated with an excellent prospect of long term survival. Currently, three baseline prognostic scoring systems - the Sokal, Hasford (Euro) and EUTOS risk scores - have all been used to identify pts with a poor response and/or an adverse prognosis in CP-CML. Recently, the EUTOS long-term survival (ELTS) score is shown to have strong predictive power for overall survival in CML pts. We have previously reported bioassays that have significant value for predicting MMR. Combinations of these biomarkers, together with clinical risk score, may provide a better indicator of high risk pts at the time of diagnosis. Aim. To identify high-risk pts by combining selected predictive bioassay, determine whether the ELTS score is more discriminating, and determine whether it provides additional predictive value when combined with the biomarker score. Methods. Bioassays including CRKL IC50 imatinib (White, Blood, 2005), OCT-1 Activity (OA)(White, JCO, 2010), leves of 39 plasma cytokines (Nievergall, Leukemia, 2016), expression of 20 most prognostic gene by qPCR TLDA (Kok, ASH abstract, 2015), ABCB1 gene expression (Eadie, Leukemia, 2016), KIR2DL5B genotype (Yeung, Blood, 2015), BIM and ASXL1 polymorphisms (Marum, Blood advances, 2017) were used in this study. High-risk by biomarker score (HR) was defined as pts who did not achieve MMR by 2 yrs. 210 TIDEL-II pts (frontline imatinib with early switch to nilotinib for failure to meet optimal time-dependent molecular targets) were used in this study (Yeung, Blood, 2015). Only 201 pts had ELTS scores. The Recursive Partitioning and Regression Trees (rpart) algorithm was used to identify important bioassays in predicting high-risk pts. Fisher's-exact test was used for statistical analysis. Results. In the TIDEL-II cohort, there were 21 high ELTS and 180 low/intermediate ELTS pts. Pts with high ELTS had significantly lower rates of MMR by 2 yrs compared to those pts with low/intermediate ELTS (57% vs 81%, p=0.02). We constructed a predictive model using multiple different bioassays as variables to predict high-risk pts. The rpart based model used in this analysis yielded four variables (IGFBP2 gene expression, KIR2DL5B genotype, OA, and MCP-1 cytokine plasma level) as most important for predicting high-risk pts. The accuracy of the model was 84%. Pts predicted as high-risk (HR, n=27) had significantly lower MMR achievement rate compared to those predicted as low-risk (LR), (26% vs 86%, n=183, p<0.0001, OR:17.3). Importantly, pts with HR had significantly higher rate of blast-crisis progression (15%, n=4/27) compared to those with LR (1.6%, n=3/183, p=0.006, OR:10.4) and pts with high ELTS (5%, n=1/21). Interestingly, there were two categories of HR patient groups based on the model: 1) Patient with high IGFBP2 gene expression and low OA, and 2) pts with low IGFBP2, KIR2DL5B positive genotype and high MCP-1 cytokine level. When combined with ELTS, the bioassays model improved ELTS performance in predicting HR pts. For instance, within the low/intermediate ELTS pts group, our assays could futher distinguish HR pts with inferior MMR (n=20, 2 yrs MMR of 30%) versus LR pts (n=160, 2 yrs MMR 87%). Similarly, pts with high ELTS in combination with HR also had lower MMR rate (n=1/5, 20%) compared to pts with high ELTS in combination with LR (n=11/16, 69%, p=0.11, OR:8.8). Conclusion. We developed a combined bioassays model that is predictive of MMR failure and adverse clinical outcomes for pts who receive optimised frontline imatinib therapy. This model performs well even without adding clinical parameters. Our model has additional predictive value when used together with the ELTS score, and can distinuguish HR pts within the low/intermediate ELTS group, as well as LR patients within the high ELTS category. Further confirmation of the predictive performance of this model, using a large independent patient cohort is now indicated. We postulate that this bioassay-based model could be used, in combination with ELTS, for identifying HR pts who would benefit from intensified therapeutic approaches to obtain optimal clinical outcome. Disclosures Yeung: Amgen: Honoraria; Pfizer: Honoraria; BMS: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Specialised Therapeutics Australia: Honoraria. Yong:Celgene: Research Funding; Novartis: Honoraria, Research Funding; BMS: Honoraria, Research Funding. White:BMS: Research Funding; Novartis: Honoraria, Research Funding. Hughes:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Incyte: Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees.


2019 ◽  
Vol 3 (10) ◽  
pp. 1610-1621 ◽  
Author(s):  
Chung H. Kok ◽  
David T. Yeung ◽  
Liu Lu ◽  
Dale B. Watkins ◽  
Tamara M. Leclercq ◽  
...  

Abstract In chronic-phase chronic myeloid leukemia (CP-CML) patients treated with frontline imatinib, failure to achieve early molecular response (EMR; EMR failure: BCR-ABL1 &gt;10% on the international scale at 3 months) is predictive of inferior outcomes. Identifying patients at high-risk of EMR failure at diagnosis provides an opportunity to intensify frontline therapy and potentially avoid EMR failure. We studied blood samples from 96 CP-CML patients at diagnosis and identified 365 genes that were aberrantly expressed in 13 patients who subsequently failed to achieve EMR, with a gene signature significantly enriched for stem cell phenotype (eg, Myc, β-catenin, Hoxa9/Meis1), cell cycle, and reduced immune response pathways. We selected a 17-gene panel to predict EMR failure and validated this signature on an independent patient cohort. Patients classified as high risk with our gene expression signature (HR-GES) exhibited significantly higher rates of EMR failure compared with low-risk (LR-GES) patients (78% vs 5%; P &lt; .0001), with an overall accuracy of 93%. Furthermore, HR-GES patients who received frontline nilotinib had a relatively low rate of EMR failure (10%). However, HR-GES patients still had inferior deep molecular response achievement rate by 24 months compared with LR-GES patients. This novel multigene signature may be useful for selecting patients at high risk of EMR failure on standard therapy who may benefit from trials of more potent kinase inhibitors or other experimental approaches.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4448-4448
Author(s):  
Syed J. Mehdi ◽  
Sarah K Johnson ◽  
Joshua Epstein ◽  
Maurizio Zangari ◽  
Pingping Qu ◽  
...  

Abstract Introduction: Certain studies suggest that multiple myeloma (MM) induces expansion of bone marrow (BM) mesenchymal stem cells (MSCs), but others showed induction of MSC senescence. MM cells suppress MSC lineages such as osteoblasts, while their effects on adipocytes remain to be elucidated. Recent studies identified "regulated" adipocytes that are smaller in size than large adipocytes that are constitutively present (Scheller et al, Nature Commun 2015), and that function as an endocrine tissue and regulators of hematopoiesis (Cawthorn et al, Cell Metab 2014), suggesting that BM adipocytes are functionally heterogeneous. We established a MSC gene signature in whole bone biopsies and showed that it gradually changes in different disease stages and is associated with outcome (Schinke et al, CCR 2018). The aim of the study was to identify changes in expression of MSC genes in BM of patients with high risk MM and in focal lesions (FLs), and to elucidate whether these changes reflect altered proportion and function of MSCs and their lineages. Methods: MSC gene expression in whole bone biopsies from normal donors (n=68), and patients with MGUS/SMM (n=90) and MM (n=531) was analyzed using global gene expression profiles. Unexpanded single MSCs from normal donors (n=3; 175 single MSCs) and MM patients (n=3; 162 single MSCs) were sorted by FACSAria and expression of mesenchymal cell, proliferation and senescence markers were analyzed by qRT-PCR using Fluidigm Biomark HD. Functionally, single MSCs were tested for their ability to multiply using supportive serum and MSC-conditioned media. Cell senescence was analyzed by SA-βGal staining. IGFBP2 and adiponectin protein were detected using immunohistochemistry (IHC). Numbers of IGFBP2+ cells were analyzed in biopsies from patients with MGUS/SMM, low risk (LR) and high risk (HR) MM (10 biopsies/group). Cultured MSCs were differentiated to adipocytes by treatment with dexamethasone, insulin and indomethacin for 3-4 weeks. The effects of recombinant IGF1 and IGFBP2 on MM cell growth were performed on BM-dependent MM lines (n=3) cultured in serum-free conditions for 48 hrs. Results: We compared MSC gene expression levels in random interstitial BM biopsies of patients with LR and HR MM, and in paired biopsy samples from random BM and FLs; 41 of the 345 MSC genes were differentially expressed in both comparisons. Most overexpressed genes were related to angiogenesis and ECM, including several collagen genes (e.g., COL4A1, POSTN, and HSPG2). Several underexpressed genes were associated with adipocytes, including IGFBP2 and aldo/keto reductases. To unravel whether these differences in gene expression reflect changes in the proportion of MSCs we tested expression of genes associated with MSCs, osteoblastogenesis, adipogenesis, proliferation and senescence in unexpanded single MSCs. MM single MSCs had significant reduction in expression of KI67 and increased expression of the senescence marker, CDKN2A/p16, whereas expression of other tested genes were modestly differentially expressed between the two groups. Functionally, unexpanded MM MSCs had increased SA-βGal expression, and only 65±8% of single MSCs divided at least once compared to 90±4% of their normal donor counterparts (p<0.03), suggesting that the in vivo MSC gene expression in MM reflects modifications in mesenchymal cell lineages that encompass most of the mesenchymal compartment in bone. Since IGFBP2 is involved in adipogenesis and bone homeostasis we traced the source of this factor using IHC. Double staining for IGFBP2 and adiponectin revealed that IGFBP2 was mainly expressed by small adipocytes. The number of IGFBP2+ cells was higher in BM biopsies from patients with MGUS/SMM than in those from patients with MM (p<0.02), and the number was lower in biopsies from patients with HR MM than with LR MM (p<0.01). Normal MSCs differentiated to adipocytes produced a high level of IGFBP2, while co-culturing MSCs with MM cells inhibits their differentiation to adipocytes by 6 folds (p<0.001) and reduced expression of IGFBP2 and adiponectin. Recombinant IGFBP2 effectively blocked IGF1-mediated growth of MM cells, indicating its role in controlling IGF1 bioavailability. Conclusions: Our data demonstrate that MM MSCs are less proliferative and that IGFBP2+ small adipocytes are a distinct mesenchymal cell population suppressed by MM, and their depletion may contribute to disease progression. Disclosures Epstein: University of Arkansas for Medical Sciences: Employment. Davies:Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; MMRF: Honoraria; ASH: Honoraria; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Abbvie: Consultancy; TRM Oncology: Honoraria. Morgan:Takeda: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1130-1130 ◽  
Author(s):  
Jerald P. Radich ◽  
Giovanni Martinelli ◽  
Andreas Hochhaus ◽  
Enrico Gottardi ◽  
Simona Soverini ◽  
...  

Abstract Abstract 1130 Poster Board I-152 Background Nilotinib is a selective and potent BCR-ABL inhibitor, with in vitro activity against most BCR-ABL mutants (excluding T315I) indicated for the treatment of patients with Philadelphia chromosome positive (Ph+) CML in CPor AP resistant or -intolerant to prior therapy, including imatinib. In a previous analysis of nilotinib in patients with BCR-ABL mutations, mutations occurring at three specific amino acid residues (E255K/V, Y253H, and F359C/V) were shown to be associated with less favorable response to nilotinib. The current analysis is based on mature data with a minimum follow-up of 24-months for all patients. Outcomes of patients at 24 months were analyzed by mutation type. Methods Imatinib-resistant CML-CP (n = 200) and CML-AP (n = 93) patients were subdivided into the following mutational subsets: no mutation, sensitive mutations (including mutations with unknown in vitro IC50). or E255K/V, Y253H, or F359C/V mutations at baseline. Patients with mutations of unknown in vitro sensitivity were classified as sensitive in this analysis based on a previous finding that patients with these mutations responded similarly to nilotinib as patients with sensitive mutation. Patients with baseline T315I mutations were excluded from this analysis. Patient groups were analyzed for kinetics and durability of cytogenetic and molecular response to nilotinib, as well as event-free survival (EFS), defined as loss of hematologic or cytogenetic response, progression to AP/BC, discontinuation due to disease progression, or death, and overall survival (OS). Results In CML-CP and -AP patients with no mutation, sensitive mutations, or E255K/V, Y253H, or F359C/V mutations, hematologic, cytogenetic and molecular responses are provided in the Table. Overall, patients with no mutations responded similarly to patients with sensitive mutations, whereas patients with E255K/V, Y253H, or F359C/V mutations had less favorable responses. This correlation was observed in both CML-CP and CML-AP patients, respectively. Median time to CCyR was 3.3 months (range, 1.0–26.7) for CML-CP patients with no mutations, and 5.6 months (range, 0.9–22.1) for patients with sensitive mutations. At 24 months, CCyR was maintained in 74% of CML-CP patients with no mutation and in 84% of patients with sensitive mutations. One patient with CML-CP and an E255K mutation achieved CCyR at 25 months and maintained until last assessment at 30 months. Median time to MMR was similar at 5.6 months (range, 0.9–25.8) for CML-CP patients with no mutations and 5.6 months (range, 2.7–22.1) for patients with sensitive mutations. No patient with a less sensitive mutation achieved MMR. Median EFS and 24-month estimated OS rate are provided in the Table. Conclusions Imatinib-resistant CML-CP and CML-AP patients treated with nilotinib therapy with BCR-ABL mutations (excluding E255K/V, Y253H, or F359C/V) achieved rapid and durable cytogenetic responses, and estimated EFS and OS at 24 months similar to that of patients with no mutations, respectively. Patients with E255K/V, Y253H, or F359C/V mutations had lower and less-durable responses and shorter EFS than patients with sensitive mutations. Alternative therapies may be considered for patients with these uncommon mutations (E255K/V, Y253H, and F359C/V). Disclosures Radich: Novartis: Consultancy, Honoraria, Research Funding. Hochhaus:Novartis: Research Funding. Branford:Novartis Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding. Shou:Novartis: Employment. Haque:Novartis: Employment. Woodman:Novartis: Employment. Kantarjian:Novartis: Research Funding. Hughes:Bristol-Myers Squibb: Advisor, Honoraria, Research Funding; Novartis: Advisor, Honoraria, Research Funding. Kim:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Wyeth: Research Funding. Saglio:Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1125-1125 ◽  
Author(s):  
Michael P Osborn ◽  
Susan Branford ◽  
Deborah L White ◽  
John F Seymour ◽  
Ruth Columbus ◽  
...  

Abstract Abstract 1125 Poster Board I-147 The Australasian Leukaemia and Lymphoma Group conducted a trial (TIDEL I) in 103 patients with newly diagnosed chronic phase CML, using imatinib 600 mg/day with dose escalation to 800 mg/day for suboptimal response. This was defined as failure to achieve (1) complete haematological response (CHR) at 3 months, (2) major cytogenetic response (MCR) at 6 months, (3) complete cytogenetic response (CCR) or molecular equivalent at 9 months, or (4) less than 0.01% (IS) BCR-ABL by RQ-PCR at 12 months. Here we report the outcomes with all surviving patients having been treated for at least 60 months. We aimed to determine whether the patient outcome at 60 months was predicted by the molecular response within the first 18 months of imatinib therapy. The outcomes for patients maintaining a dose of imatinib of ≥600 mg/day in the first 12 months was compared to those who were on a reduced dose for at least part of this time. Event-free survival (EFS) was defined as death from any cause, accelerated phase/blast crisis (AP/BC), and loss of CHR, MCR or CCR. The 103 patients included 66 males and 37 females with a median (±SD) age of 49 (±14) years. All patients had an ECOG performance status of 0-2 at enrolment. The 5-year EFS was 71%, transformation (AP/BC) free survival (TFS) was 95%, and overall survival was 87%. Of the 14 patients who died, 3 died in blast crisis, 2 from transplant-related complications, 8 from CML-unrelated causes, and the cause of death of 1 patient was unavailable. The annual rates of progression to AP/BC over 5 years were 3%, 1%, 0%, 1%, and 0%, while annual event rates were 13%, 8%, 8%, 1%, and 4%. CCR was achieved by 89% of patients by 60 months, while 72% achieved a major molecular response (MMR) by this time. In the first 12 months of treatment, 55% of patients maintained an imatinib dose of ≥600 mg/day (mean ±SD dose = 604 ±10 mg/day), while 45% were on <600 mg/day for at least part of this time (mean ±SD dose = 511 ±100 mg/day). EFS at 60 months was significantly higher in patients taking ≥600 mg/day compared with those who had been dose-reduced to <600 mg/day (89% vs 56%, P<0.001). Annual event rates for the ≥600 mg/day group were 6%, 2%, 2%, 0%, and 2%, while annual event rates for those on <600 mg/day were 14%, 16%, 16%, 8%, and 4%. By 60 months, 96% of patients who had been on ≥600 mg/day within the first 12 months had achieved CCR, while only 80% of those who had been on <600 mg/day had achieved this milestone (P<0.001). Log rank analysis of the achievement of MMR was also significant (P=0.03). Overall survival and TFS after 12 months were both similar between the dosing groups. There was no difference between the dosing groups' median age (50 vs 48 years, P=0.36) or Sokal score (1.04 vs 0.94, P=0.33) that may otherwise account for these results. The outcome was also determined for all patients dependent on the BCR-ABL levels at various assessment timepoints. Patients with a BCR-ABL level of <10% (IS) at 6 months (n=92) had an EFS of 78% at 60 months, while all of those with a level >10% (IS) (n=8) had an event (P<0.001). Patients with a level of ≤1% (IS) at 12 months (equivalent to CCR) (n=81) had an EFS of 75% compared with 25% (n=13) for those with levels >1% (IS) (P<0.001). At 18 months, a level ≤0.1% (IS) (n=58) conferred an EFS of 88%, while those who had failed to attain this depth of response (n=30) had an EFS of 60%. There was a significant difference in EFS between those who had achieved an MMR at 18 months and those who had achieved a CCR, but no MMR (88% vs 67%, P=0.03). In conclusion, our data suggest that patients maintaining a dose of ≥600mg in the first 12 months of imatinib therapy are more likely to achieve CCR and MMR, and superior EFS compared to those with a lower dose. This study also confirms that achieving an MMR by 18 months is associated with improved EFS. This emphasises the value of achieving a molecular response early in the treatment course, as well as adding weight to the evidence supporting the role of molecular monitoring in CML. Disclosures Branford: Novartis Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding. White:Novartis and Britol-Myers Squibb: Research Funding. Seymour:Bayer Schering: Consultancy, Membership on an entity's Board of Directors or advisory committees, Travel grants; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Travel Grants. Catalano:Roche: Honoraria, Research Funding, Travel grants. Mills:Celgene Pty Ltd: Honoraria, Membership on an entity's Board of Directors or advisory committees. Hughes:Bristol-Myers Squibb: Advisor, Honoraria, Research Funding; Novartis: Advisor, Honoraria, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1800-1800
Author(s):  
Rowan Kuiper ◽  
Annemiek Broyl ◽  
Yvonne de Knegt ◽  
Martin H. van Vliet ◽  
Erik H. van Beers ◽  
...  

Abstract Abstract 1800 Introduction: Survival of patients with newly diagnosed multiple myeloma (MM) is highly variable and currently used clinical prognostic markers such as the international staging system (ISS) and cytogenetic markers are insufficiently adequate for defining individual patient prognosis. We established a prognostic signature based on gene expression profiling. Methods: The signature was generated using a training set of 290 newly diagnosed MM patients included in the multicenter, prospective open-label randomized phase 3 HOVON65/GMMG-HD4 trial. Gene expression profiles, obtained from purified plasma cells, were generated using the Affymetrix GeneChip® Human Genome U133 Plus 2.0 platform (GSE19784; Broyl et al.,Blood 2010; 14:2543–2553). The model predictive for survival was built by supervised principal component analysis (Bair et al., J. Amer. Statistical Assoc. 2006;101:119–37) and further optimized by simulated annealing. The generated survival signature was compared to six previously reported MM gene expression signatures (i.e. UAMS-70, UAMS-17 (Shaughnessy et al., Blood. 2007;109:2276–84), gene expression-based proliferation index (GPI, Hose et al., Haematol. 2010; 96: 87–95), MRC-IX-6 gene (Dickens et al., Clin. Cancer Res. 2010;16:1856–1864), Millennium (Mulligan et al., Blood 2007; 109:3177–3188) and IFM (Decaux et al., J. Clin. Oncol. 2008; 26:4798–4805). Results: A signature of 92 probe sets (EMC-92-gene signature) was highly discriminative for high-risk MM patients, defined as overall survival (OS) < 2 yr (21.7%) vs. standard-risk MM. This performance was confirmed in independent validation datasets of newly diagnosed MM patients (UAMS-TT2, n=351, GSE2658; MRC-IX, n=247, GSE15695) and relapse MM patients (APEX, n=264, GSE9782). In the UAMS-TT2 dataset, a high-risk population of 19.1% was identified which had a hazard-ratio of 3.52 (P = 2.5 × 10−8). In the MRC-IX study, 20.2% of patients were identified as high risk with a hazard-ratio of 2·38 (P = 3·6 × 10−6; Figure 1a) The high-risk signature was able to identify patients with significantly shorter survival in both the transplant-eligible and non-transplant-eligible patients included in the MRC-IX study. In non-transplant-eligible patients, 23.8% high risk patients were identified with a hazard-ratio of 2.38 (P = 4.3 × 10−4), whereas 17.5% of transplant-eligible patients were high-risk with a hazard-ratio of 2.54 (P = 1.5 × 10−3). The difference between survival in high-risk and standard risk was not restricted to newly diagnosed patients, as 15.9% of patients included in the APEX relapse study were designated high-risk with a hazard-ratio of 3·14 (P = 5·3 × 10−9; Figure 1b). In all sets the signature gave consistent and significant results and had good performance in comparison to other published high-risk gene signatures (Figure 2). In a pair-wise comparison to other high-risk gene signatures the EMC-92-gene showed to be among the top performing signatures and independent of all other signatures. In multivariate analyses, the EMC-92-gene signature proved an independent and superior predictor against clinical and cytogenetic variables such as the ISS and unfavourable cytogenetic aberrations including del(17p). Using the independent MRC-IX set, poor prognostic cytogenetic aberrations 1q gain, del(17p), t(4;14), t(14;16), t(14;20) and del(13q), were enriched in high-risk patients, whereas the frequency of standard risk cytogenetic aberrations such as t(11;14) was lower in the high-risk populations. Although enriched in the high-risk population, still more than half of patients in the standard risk group showed one or more poor prognostic cytogenetic markers Conclusions: We developed a high-risk signature highly discriminative for patients with high-risk versus standard-risk MM, irrespective of treatment regime, age and relapse setting. Use of this signature in the clinical setting may lead to a more informed treatment choice and potentially better outcome for the patient. Disclosures: van Vliet: Skyline Diagnostics: Employment. van Beers:Skyline Diagnostics: Employment, Patents & Royalties. Mulligan:Millennium Pharmaceuticals, Inc.: Employment. Morgan:Millennium Pharmaceuticals, Inc: Honoraria. Gregory:Celgene: Honoraria. Goldschmidt:Johnson& Johnson: Membership on an entity's Board of Directors or advisory committees. Lokhorst:Genmab: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Sonneveld:Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Skyline Diagnostics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1578-1578 ◽  
Author(s):  
Franck E. Nicolini ◽  
Gabriel Etienne ◽  
Viviane Dubruille ◽  
Lydia Roy ◽  
Françoise Huguet ◽  
...  

Abstract Background & aims In the Nilopeg trial (EudraCT 2010-019786-28), we have previously demonstrated that the combination of nilotinib (Tasigna® Novartis), a second generation inihibitor (TKI2), combined to pegylated interferon-alpha 2a (Peg-IFN, Pegasys®, Roche) in de novo chronic phase chronic myeloid leukemia (CP-CML) patients is able to induce high rates of molecular responses with an acceptable additional toxicity (F. E. Nicolini et al. Lancet Haematology 2015) within 24 months of follow-up. We report here the ≥4-year follow-up of such patients for toxicity and efficacy. Methods In a phase 2 study, newly diagnosed CP-CML patients were assigned to a priming strategy by Peg-IFN (± HU) for a month at 90 mg/wk, prior to a combination of nilotinib 300 mg BID + Peg-IFN 45 micro.g/wk for ≥ 1 year, maximum 2 years. After 2 years nilotinib was continued alone. The primary endpoint was the rate of confirmed molecular response 4.5 (MR4.5) by 1 year. Molecular assessments were centralised for all patients and expressed as BCR-ABLIS in % for 2 years and then performed in each center [all expressed in % on the international scale (IS)]. All data presented here are in intention-to-treat. Events were defined as death, progression to AP or BC, failure on nilotinib or nilotinib treatment discontinuation for any cause excluding treatment-free remission (TFR). Results Fourty-two patients were enrolled in this trial (one withdrawn its consent prior to treatment initiation), and the median follow-up is now 50.7 (47.8-52.8) months. Sokal and Euro scores were high for 12% and 2%, intermediate for 49% and 55% and low for 39% and 43% of the patients respectively. The median age at treatment initiation was 53 (23-85) years, 2 patients had a masked Philadelphia chromosome, 3 a variant form, and 1 additional chromosomal abnormalities, all patients had "major" BCR-ABL1 transcripts. The rates of Complete Cytogenetic Responses (CCyR) at "6", and "12" months of combination (i. e. at 5 and 11 months of TKI2) were 71%, and 100% respectively. Eighty seven percent of patients had a BCR-ABLIS ≤10% at M3 (i. e. after 2 months TKI). The rates of molecular responses respectively at 12, 24, 36 and 48 months were 76%, 78%, 83%, 73% for MMR, 51%, 58.5%, 66%, 58.5% for 4 log reduction (MR4), 17%, 34%, 34%, 44% for 4.5 log reduction (MR4.5), 12%, 32%, 29%, 41.5% for ≥5 log reduction (MR5), shown as cumulative incidence curves for MR4.5 in figure 1. The median doses of Peg-IFN delivered to the patients during the first year were 45 (0-45) micro.g/wk, and for nilotinib 600 (300-600) mg daily. Interestingly, logistic regression analysis adjusted on MR4.5 responses showed a significant relationship with the mean doses of Peg-IFN delivered to the patients at 12 months (p=0.003, OR = 1.09 [1.03-1.16]), 24 months (p=0.005, OR = 1.08 [1.02-1.14]) and 48 months (p=0.024, OR = 1.09 [1.01-1.17], but not with the mean doses of nilotinib [p=0.84, OR = 0.99 [0.99-1.01], p=0.087, OR = 1 [0.99-1.01], and p=0.88, OR = 1 [0.99-1.01] respectively. Eight patients (19.5%) were in TFR for a median of 6.8 (0.5-9.5) months after 2-year consecutive MR4.5, and none lost MMR yet at last follow-up. One patient died of progression (unmutated myeloid blast crisis at M6, who relapsed after unrelated allogeneic stem cell transplantation). There was no additional grade 3-4 hematologic or biochemical toxicities occurring after 24 months. At last follow-up 10 patients switched for another TKI (2 for dasatinib, 5 for imatinib, and 3 for imatinib followed by dasatinib), for unsufficient cytogenetic or molecular response (2 patients) or for toxicity (7 patients). Overall, 4 patients presented some cardio-vascular events 3 coronary stenoses, one brain stroke). Conclusion Despite additional initial toxicities Peg-IFN priming strategy, followed by the combination of nilotinib and Peg-IFN during the first year induces very high rates of durable deep molecular responses (MR4 and MR4.5) at later time-points, offering TFR for number of patients. To date, no emerging severe adverse events occurred. However, to confirm these promising results, a randomised phase III study testing nilotinib versus nilotinib + Peg-IFN is absolutely warranted and in progress. Figure 1. Cumulative incidence of MR4.5 Figure 1. Cumulative incidence of MR4.5 Disclosures Nicolini: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Ariad Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Etienne:ARIAD: Consultancy, Honoraria, Speakers Bureau; Novartis: Consultancy, Honoraria, Other: Congress Travel/Accomodations, Research Funding, Speakers Bureau; BMS: Consultancy, Honoraria, Speakers Bureau. Roy:BMS: Consultancy, Research Funding; Novartis: Consultancy, Research Funding. Huguet:Novartis: Consultancy, Research Funding; BMS: Consultancy, Speakers Bureau; ARIAD: Consultancy, Speakers Bureau; PFIZER: Consultancy, Speakers Bureau. Legros:ARIAD: Speakers Bureau; BMS: Speakers Bureau; Novartis: Research Funding, Speakers Bureau. Giraudier:Novartis: Speakers Bureau. Coiteux:BMS: Speakers Bureau; ARIAD: Speakers Bureau; Novartis: Speakers Bureau. Guerci-Bresler:ARIAD: Speakers Bureau; BMS: Speakers Bureau; Novartis: Speakers Bureau; PFIZER: Speakers Bureau. Rea:Pfizer: Honoraria; Ariad: Honoraria; Novartis: Honoraria; Bristol-Myers Squibb: Honoraria. Amé:BMS: Speakers Bureau; Novartis: Speakers Bureau. Cony-Makhoul:Novartis: Consultancy, Honoraria, Speakers Bureau; BMS: Consultancy, Honoraria, Speakers Bureau. Gardembas:Novartis: Speakers Bureau. Hermet:Novartis: Speakers Bureau; BMS: Speakers Bureau. Rousselot:Pfizer: Consultancy; BMS: Consultancy, Speakers Bureau; Novartis: Speakers Bureau. Mahon:ARIAD: Consultancy; Bristol-Myers Squibb: Consultancy, Honoraria; Pfizer: Consultancy; Novartis: Consultancy, Honoraria.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3181-3181
Author(s):  
Frits van Rhee ◽  
Alan Mitchell ◽  
Maurizio Zangari ◽  
Jeffery Sawyer ◽  
Sarah Waheed ◽  
...  

Abstract Introduction: Total Therapy 4 (TT4) comprises a randomized phase III trial enrolling 289 patients with gene expression profiling defined low-risk MM in which patients were allocated to a standard arm (TT4-S) or a light arm (TT4-L) with as principal goal to reduce toxicity yet maintain efficacy in TT4-L. Methods: The TT4-S regimen was similar to TT3b and utilized 2 cycles of VDTPACE induction, tandem transplantation with melphalan 200mg/m2, 2 cycles of dose reduced VDTPACE consolidation and 3 years maintenance with VRD. In TT4-L the number of induction and consolidation cycles was reduced to one each and melphalan was given in a fractionated fashion (50mg/m2/d x 4days) to avoid peak levels of melphalan and reduce mucosal toxicity. Bortezomib and thalidomide were added to the fractionated melphalan conditioning regimen to explore synergistic effects and compensate for potential loss of efficacy. Results: Grade ≥3 toxicities in TT4-S and L occurred with similar frequencies. With a median follow-up of 4.5 years, the OS and PFS were similar in TT4-S and TT4-L at 90 and 87% respectively. The same applied to PFS (TT4-S 84% versus TT4-L 79%). The presence of metaphase defined cytogenetic abnormalities (CA) affected clinical outcomes. In TT4-S, patient with CA had a strong trend toward inferior OS compared to patients with no CA (2 year estimate 83 versus 94%, p=0.08), while the reverse applied to TT4-L (95 versus 81%, p=0.07). Non-significant trends in similar directions were noted for PFS. Complete remission duration tended to be inferior in patients with CA-type MM in TT4-S (2 year estimate, 79 vs. 92%, p=013) with no significant differences in TT4-L. Time to relapse was significantly shorter for CA patients on the TT4-S arm (2 year estimate, 15.4 versus 3.9%), but was not affected by CA in the TT4-L (15.8 vs 7.9%, p=0.79. The observation of CA's favorable OS impact in TT4-L was not anticipated. We next analyzed whether the presence or absence of metaphase CA was linked to specific gene probes which could help to explain better outcomes in TT4-L. Among a training set of 266 untreated patients enrolled in TT3a with available baseline GEP studies, 90 (34%) exhibited CA. Among a test set of 164 patients with baseline GEP accrued to TT3b, 67 (41%) qualified as having CA. Fifty-one probes were different in patients with and without CA (q<0.0001). Seven of the 51 genes had functions in DNA replication, recombination, and repair; five in nucleic acid metabolism, and 4 in RNA post-translational modification and RNA damage and repair. Pathway analysis identified a network of eight interrelated genes that were overexpressed in the CA group, indicating that these MM cells have a higher proliferative activity. We next examined clinical outcomes by the GEP51-CA prediction model in the 2 arms of TT4. In TT4-S, GEP51/no-CA had superior OS and PFS compared to GEP51/CA, which was not observed in TT4-L (Figure 1A, B). Conclusions: A prognostic CA-linked GEP signature can identify patients who benefit from conditioning with fractionated melphalan dosing together bortezomib, thalidomide and dexamethasone which negates the adverse impact of CA. Patients who lacked a CA-type gene signature were best served with single high dose melphalan. These exploratory findings need to be confirmed in a prospective randomized trial. Figure 1. PFS according to 51-gene model predicting CA versus no-CA according to arm (TT4-S, 1A; TT4-L, 1B) Figure 1. PFS according to 51-gene model predicting CA versus no-CA according to arm (TT4-S, 1A; TT4-L, 1B) Disclosures van Rhee: University of Arkansa for Medical Sciences: Employment. Mitchell:Cancer Research and Biostatistics: Employment. Zangari:Millennium: Research Funding; Novartis: Research Funding; University of Arkansas for Medical Sciences: Employment; Onyx: Research Funding. Sawyer:University of Arkansas for Medical Sciences: Employment. Waheed:University of Arkansas for Medical Sciences: Employment. Heuck:Millenium: Other: Advisory Board; Janssen: Other: Advisory Board; Celgene: Consultancy; Foundation Medicine: Honoraria; University of Arkansas for Medical Sciences: Employment. Thanendrarajan:University of Arkansas for Medical Sciences: Employment. Schinke:University of Arkansas for Medical Sciences: Employment. Jethava:University of Arkansas for Medical Sciences: Employment. Grazziutti:University of Arkansas for Medical Sciences: Employment. Petty:University of Arkansas for Medical Sciences: Employment. Steward:University of Arkansas for Medical Sciences: Employment. Panozzo:University of Arkansas for Medical Sciences: Employment. Bailey:University of Arkansas for Medical Sciences: Employment. Hoering:Cancer Research and Biostatistics: Employment. Crowley:Cancer Research and Biostatistics: Employment. Davies:University of Arkansas for Medical Sciences: Employment; Celgene: Consultancy; Janssen: Consultancy; Onyx: Consultancy; Millenium: Consultancy. Barlogie:University of Arkansas for Medical Sciences: Employment. Morgan:MMRF: Honoraria; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Weismann Institute: Honoraria; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; CancerNet: Honoraria; University of Arkansas for Medical Sciences: Employment; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1222-1222
Author(s):  
Kee Yon, Lionel See ◽  
Kok Chong Bernard Yap ◽  
Dong-Wook Kim ◽  
Hein Than ◽  
Yeow-Tee Goh

Abstract Chronic Myeloid Leukaemia (CML) is a triphasic disease which typically presents in chronic phase with risk of progression to more aggressive phases in a certain proportion of patients. Accelerated Phase (AP), as described in the pre-Tyrosine Kinase Inhibitor (TKI) era by Kantarjian et al in 1988, is an intermediate stage with a poor median overall survival (OS) of ≤18 months without haematopoietic stem cell transplantation (HSCT). Since TKI therapy has revolutionized CML treatment, a significantly improved OS has been seen in most CML patients, including those in AP. Not all CML-AP patients require HSCT upfront nowadays and many are able to achieve major molecular remission (MMR) and favourable OS on TKI therapy. However, updated classifications of CML-AP by the World Health Organization (WHO) and European LeukemiaNet (ELN) do not reflect these significant advances in the TKI era. There is a need to re-evaluate the CML-AP classification that will have an impact on treatment decisions for CML-AP patients. In this study, we explored the association between various haematological parameters at diagnosis and the probabilities of OS and progression-free survival (PFS) of CML-AP patients on TKI therapy. Overall Survival (OS) and Progression-Free Survival (PFS) trends of 75 newly diagnosed CML-AP patients treated with frontline TKIs between 2000 to 2013 from Singapore General Hospital and Seoul St. Mary's Hospital in South Korea were retrospectively analysed with regards to demographic and haematological parameters, such as cell counts from serum and bone marrow at diagnosis, using cox proportional hazards analysis. Survival was also compared using log-rank test with Bonferroni corrections between CML-AP patients and 227 CML Chronic Phase (CML-CP) high-risk Sokal and 34 Blast Crisis (CML-BC) patients on TKI-based therapy. OS was defined as duration from diagnosis of CML-AP to death from any reason. PFS was defined as duration from disease diagnosis to the first occurrence of progression or death due to CML. As a whole, CML-AP patients treated with frontline TKI had survival that paralleled CML-CP high-risk Sokal patients (p-value = 0.694 for OS, p-value = 0.258 for PFS). Most of the death and progression occurred less than 3 years of starting TKI therapy (69.2% for OS, 84.6% for PFS). Multivariable analysis in CML-AP patients showed that male gender, bone marrow (BM) blasts ≥10% and clonal chromosomal abnormalities (CCAs) at diagnosis were associated with poor OS (Hazard Ratio (HR) 18.53, p-value = 0.013; HR 1.16, p-value = 0.010; HR 5.05, p-value = 0.044, respectively) and poor PFS (HR 12.96, p-value = 0.021; HR 1.17, p-value = 0.007; HR 8.84.05, p-value = 0.008, respectively). CML-AP patients with all 3 of these risk factors experienced the worst OS compared to those with 1 or zero risk factors (p-value <0.001). Patients with all 3 risk factors also had the poorest PFS compared to those with 2, 1 and zero risk factors (p-value = 0.022, <0.001, <0.001 respectively; figure 1). CML-AP Patients with 2 risk factors or less, had OS and PFS probabilities comparable to CML-CP patients with high-risk Sokal score (p-value = 0.082 for OS, p-value= 0.813 for PFS, figure 2 and 3 respectively). However, CML-AP patients with all 3 risk factors showed inferior OS and PFS probabilities similar to CML-BC patients (p-value = 0.799 for OS, p-value = 0.624 for PFS; figure 2 and 3 respectively). Our findings suggested that CML-AP was a heterogeneous group with varying survival probabilities on TKI therapy. Male gender, BM blasts ≥10% and CCAs at diagnosis were risk factors shown to be predictive of survival probabilities, and identified a high-risk sub-group among CML-AP patients with inferior OS and PFS rates similar to CML-BC patients. Aggressive chemotherapeutic strategies including HSCT should be warranted in these patients. However, TKI therapy alone with close molecular surveillance may be a reasonable option for optimally responding low-risk CML-AP patients who are not eligible for HSCT. Figure 1. Kaplan-Meier survival curves for PFS according to stratification of the number of risk factors present in CML-AP patients. Figure 1. Kaplan-Meier survival curves for PFS according to stratification of the number of risk factors present in CML-AP patients. Figure 2. Kaplan-Meier survival curves for OS according to phases of CML with AP patients separated by number of risk factors present. Figure 2. Kaplan-Meier survival curves for OS according to phases of CML with AP patients separated by number of risk factors present. Figure 3. Kaplan-Meier survival curves for PFS according to phases of CML with AP patients separated by number of risk factors present. Figure 3. Kaplan-Meier survival curves for PFS according to phases of CML with AP patients separated by number of risk factors present. Disclosures Kim: BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; ILYANG: Consultancy, Honoraria, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Goh:BMS: Honoraria; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Honoraria; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria; Takeda: Honoraria; Alexion: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document