Loss of TGF-β Signaling in Bone Marrow Mesenchymal Progenitors Promotes Adipocyte over Osteoblast Differentiation but Does Not Disrupt the HSC Niche

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 666-666
Author(s):  
Grazia Abou Ezzi ◽  
Teerawit Suparkorndej ◽  
Bryan Anthony ◽  
Jingzhu Zhang ◽  
Shilpi Ganguly ◽  
...  

Abstract Hematopoietic stem cells (HSCs) reside in specialized microenvironments (niches) in the bone marrow. Several mesenchymal stromal cells have been implicated in hematopoietic niches, including osteoblasts, pericytes, CXCL12-abundant reticular (CAR) cells, and mesenchymal stem cells (MSCs). Members of the transforming growth factor (TGF) superfamily, in particular TGF-β, have a well-documented role in regulating osteoblast development. However, the contribution of TGF family member signaling to the establishment and maintenance of hematopoietic niches is largely unknown. Here, we characterize the role of transforming growth factor-β (TGF-β) signaling in mesenchymal stromal cells on the HSC niche. TGF-β receptor 2 (encoded by Tgfbr2) is required for all TGF-β signaling. To selectively disrupt TGF-β signaling in bone marrow mesenchymal stromal cells, we generated Osx-C re Tgfbr2fl/fl mice. Osx-Cre targets most bone marrow mesenchymal stromal cells (including osteoblasts, CAR cells, MSCs, pericytes, and adipocytes) but not endothelial cells or hematopoietic cells. Osx-C re Tgfbr2fl/fl mice are severely runted and most die by 4 weeks of age. We analyzed mice at 3 weeks, when the mice appeared healthy. Osteoblast number was severely reduced in Osx-C re Tgfbr2fl/fl mice, as assessed by histomorphometry and immunostaining for osteocalcin. Accordingly, microCT analysis demonstrated reduced tissue mineral density and cortical thickness of long bone and marked trabecularization of long bones in diaphyseal regions. Surprisingly, marrow adiposity, as measured by osmium tetroxide staining with microCT, was strikingly increased in Osx-C re Tgfbr2fl/fl mice. CAR cells are mesenchymal progenitors with osteogenic and adipogenic potential in vitro. To assess CAR cells, we generated Osx-Cre Tgfrb2fl/fl x Cxcl12gfp mice. Surprisingly, CAR cell number was significantly increased. However, despite the increase in CAR cells, the number of CFU-osteoblast (CFU-OB) in Osx-C re Tgfbr2fl/fl mice is nearly undetectable. Together, these data suggest that TGF-b signaling contributes to lineage commitment of mesenchymal progenitors. Specifically, our data suggest that TGF-β signaling suppresses commitment to the osteoblast lineage, while increasing adipogenic differentiation. We next asked whether alterations in bone marrow stromal cells present in Osx-C re Tgfbr2fl/fl mice affect HSC number or function. The increase in marrow adipocytes and loss of osteolineage cells is predicted to impair HSC maintenance, while the increase in CAR cells might augment HSCs. Osx-Cre Tgfrb2fl/fl mice have modest leukopenia, but normal red blood cell and platelet counts. Bone marrow and spleen cellularity are reduced, even after normalizing for body weight. The frequency of phenotypic HSCs (defined as Kit+ lineage- Sca+ CD34- Flk2- cells) is comparable to control mice. To assess HSC function, we performed competitive repopulation assays with bone marrow from Osx-Cre Tgfrb2fl/fl or control mice. Surprisingly, these data show that the long-term multi-lineage repopulating activity of HSCs from Osx-Cre Tgfrb2fl/fl mice is normal. Moreover, serial transplantation studies suggest that the self-renewal capacity of HSCs is normal. Thus, despite major alterations in mesenchymal stromal cell populations, the HSC niche is intact in Osx-Cre Tgfrb2fl/fl mice. Collectively, these data show that TGF-b signaling in mesenchymal progenitors is required for the proper development of multiple stromal cell populations that contribute to hematopoietic niches. Studies are underway to assess the impact of post-natal deletion of Tgfbr2 in mesenchymal stromal cell on hematopoietic niches. Since drugs that modulate the activity of TGF-b are in development, this research may suggest novel approaches to modulate hematopoietic niches for therapeutic benefit. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2401-2401
Author(s):  
Jingzhu Zhang ◽  
Daniel C. Link

The bone marrow microenvironment contains hematopoietic niches that regulate the proliferation, differentiation, and trafficking of hematopoietic stem/progenitors cells (HSPCs). These hematopoietic niches are comprised of a heterogeneous population of stromal cells that include, endothelial cells, osteoblasts, CXCL12-abundant reticular (CAR) cells, mesenchymal stem cells (MSCs), arteriolar pericytes, and sympathetic nerves. Emerging data suggest that specific stromal populations may regulate distinct types of HPSCs. Thus, it is important to have validated approaches to interrogate and target specific stromal cell populations. Prior studies have shown that Prx1-Cre, Osx-Cre, Lepr-Cre, and Nes-Cre broadly target mesenchymal stromal cells in the bone marrow. Here, we rigorously define the stromal cell populations targeted by two Cre-transgenes that are commonly used to target osteolineage cells (Ocn-Cre, and Dmp1-Cre) and introduce a new Cre-transgene (Tagln-Cre) that efficiently targets bone marrow pericytes. For each Cre-transgene, we performed lineage mapping using ROSA26Ai9/Ai9 mice, in which cells that have undergone Cre-mediated recombination express tdTomato. In some cases, we further crossed these mice to introduce the Cxcl12gfp transgene, which can be used to define GFP-bright CAR cells. Immunostaining of bone sections and flow cytometry were used to define the target stromal cell population(s) in these mice. Osteocalcin (Bglap, Ocn) is primarily expressed in mature osteoblasts. Accordingly, Ocn-Cre is widely used to specifically target osteoblasts. However, our lineage mapping studies show that Ocn-Cre targets not only all osteoblasts, but also 72 ± 4.0% of CAR cells. Ocn-Cre also targets a subset of NG2+ arteriolar pericytes. Dentin matrix acidic phosphoprotein 1 (Dmp1) is expressed primarily in osteocytes, and Dmp1-Cre has been widely used to specifically target osteocytes. However, we show that Dmp1-Cre also efficiently targets endosteal osteoblasts and approximately 40% of CAR cells. To target bone marrow pericytes, we tested several Cre-transgenes, ultimately focusing on Tagln-Cre. Transgelin (Tagln, SM22a) is broadly expressed in pericytes, smooth muscle cells, and cardiomyocytes. Lineage-mapping studies show that Tagln-Cre targets all arteriolar and venous sinusoidal pericytes in the bone marrow. It also targets osteoblasts and 75 ± 5.2% of CAR cells. There are several recent studies that have ascribed specific functions to osteoblasts or osteocytes based on targeting using Ocn-Cre or Dmp1-Cre, respectively. In light of our data, these conclusions need to be re-evaluated. Ocn-Cre, Dmp1-Cre, and Tagln-Cre each target a subset of CAR cells. Studies are underway to determine whether these CAR subsets have unique expression profiles and functions. Finally, Talgn-Cre represents a new tool for investigators in the field to efficiently target bone marrow pericytes. Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Vol 39 (10) ◽  
pp. 1099-1110 ◽  
Author(s):  
Iordanis Pelagiadis ◽  
Eftichia Stiakaki ◽  
Christianna Choulaki ◽  
Maria Kalmanti ◽  
Helen Dimitriou

2018 ◽  
Vol 119 (7) ◽  
pp. 748-758
Author(s):  
Shihua Luo ◽  
Yinghai Chen ◽  
Lifen Zhao ◽  
Xia Qi ◽  
Xiaoyan Miao ◽  
...  

AbstractAplastic anaemia (AA) is characterised by pancytopenia resulting from a marked reduction in haemopoietic stem cells (HSC). The regulation of haemopoiesis depends on the interaction between HSC and various cells of the bone marrow (BM) microenvironment, including BM-derived mesenchymal stromal cells (BMSC). The purpose of this study was to analyse the biological effect of nutritional supplement (NS), a dietary supplement consisting of thirty-six compounds: amino acids, nucleotides, vitamins and micronutrients on the BMSC of AA rats. The AA rat model was established by irradiating X-ray (2·5 Gy) and intraperitoneal injections of cyclophosphamide (35 mg/kg; Sigma) and chloramphenicol (35 mg/kg; Sigma). Then AA rats were fed with NS in a dose-dependent manner (2266·95, 1511·3, 1057·91 mg/kg d) by intragastric administration. The effect of NS on the BMSC of AA rats was analysed. As compared with AA rats, NS treatment significantly improved these peripheral blood parameters and stimulated the proliferation of total femoral nucleated cells. NS treatment affected proliferative behaviour of BMSC and suppressed BMSC differentiation to adipocytes. Furthermore, NS treatment of AA rats accelerated osteogenic differentiation of BMSC and enhanced bone mineral density. Co-incubation of HSC with mesenchymal stromal cells and serum from AA rats subjected to high-dose NS markedly improved the yield of CD34+cells. Protein microarray analysis revealed that there were eleven differentially expressed proteins in the NS group compared with the AA rat group. The identified specific NS might be implicated in rehabilitation of BMSC in AA rats, suggesting their potential of nutritional support in AA treatment.


2019 ◽  
Vol 120 (8) ◽  
pp. 13881-13892
Author(s):  
Shaohui Pan ◽  
Yu‐Chen Chen ◽  
Ning Zhao ◽  
Xiang Feng ◽  
Dan‐Dan Yang ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 557
Author(s):  
Elena Sánchez-Luis ◽  
Andrea Joaquín-García ◽  
Francisco J. Campos-Laborie ◽  
Fermín Sánchez-Guijo ◽  
Javier De las Rivas

Mesenchymal Stromal Cells (MSC) are multipotent cells characterized by self-renewal, multilineage differentiation, and immunomodulatory properties. To obtain a gene regulatory profile of human MSCs, we generated a compendium of more than two hundred cell samples with genome-wide expression data, including a homogeneous set of 93 samples of five related primary cell types: bone marrow mesenchymal stem cells (BM-MSC), hematopoietic stem cells (HSC), lymphocytes (LYM), fibroblasts (FIB), and osteoblasts (OSTB). All these samples were integrated to generate a regulatory gene network using the algorithm ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks; based on mutual information), that finds regulons (groups of target genes regulated by transcription factors) and regulators (i.e., transcription factors, TFs). Furtherly, the algorithm VIPER (Algorithm for Virtual Inference of Protein-activity by Enriched Regulon analysis) was used to inference protein activity and to identify the most significant TF regulators, which control the expression profile of the studied cells. Applying these algorithms, a footprint of candidate master regulators of BM-MSCs was defined, including the genes EPAS1, NFE2L1, SNAI2, STAB2, TEAD1, and TULP3, that presented consistent upregulation and hypomethylation in BM-MSCs. These TFs regulate the activation of the genes in the bone marrow MSC lineage and are involved in development, morphogenesis, cell differentiation, regulation of cell adhesion, and cell structure.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1367-1367 ◽  
Author(s):  
Patrick Wuchter ◽  
Rainer Saffrich ◽  
Wolfgang Wagner ◽  
Frederik Wein ◽  
Mario Stephan Schubert ◽  
...  

Abstract The interaction between human hematopoietic stem cells (HSC) and their niche plays a key role in regulating maintenance of “stemness” and differentiation. We have demonstrated that a feeder layer of human mesenchymal stromal cells (MSC) can serve as a surrogate model for the niche for human HSC. We could also show, MSC are intimately connected to one another by a novel kind of adhering junction, consisting of villiformto-vermiform cell projections (processus adhaerentes). With this background, we have analyzed the intercellular junctional complexes between HSC and MSC. In comparison, we also studied the cell-cell contacts between leukemia cells (LC) and MSC. MSC were derived from bone marrow aspirates from healthy voluntary donors. HSC were isolated from umbilical cord blood. Leukemia cells that were CD34+ were obtained from bone marrow aspirates from patients suffering from acute myeloid leukemia at the time point of initial diagnosis. After 24–48 hours of co-cultivation, we stained the cellular contacts with a panel of antibodies specific for various components of tight, gap and adherens junctions. Using advanced confocal laser scanning microscopy in combination with deconvolution and volume rendering software, we were able to produce 3D-images of intercellular junctions between HSC/MSC as well as between LC/MSC. To examine the specific function of N-cadherin, we analyzed the effect of siRNA knock down of N-cadherin in MSC upon co-cultures of HSC and MSC. Intercellular connections between HSC and MSC are mainly characterized by podia formation of the HSC linking to the adjacent MSC. At the intimate contact zone to the MSC, we have identified the cytoplasmic plaque proteins alpha- and beta-catenin, co-localized with the transmembrane glycoprotein N-cadherin. Additionally, we compared these findings with a similar setting consisting of human LC co-cultured with feeder-layer of MSC. Our results demonstrated that in comparison to HSC, the proportion of leukemia cells adherent to the feeder-layer is significantly lower and podia formation is less frequent (ratio 1:3). However, the mechanism of adhesion through cadherin-catenin-complex has remained the same. At a functional level, we found that siRNA knock down of N-cadherin in MSC resulted in decreased adhesion of HSC to MSC and in a reduction of cell divisions of HSC. These results confirm that direct cellular contact via N-cadherin-based junctions is essential for homing and adhesion of HSC to the cellular niche and subsequently for the regulation of self-renewal versus differentiation in HSC.


Sign in / Sign up

Export Citation Format

Share Document