CD33 Splicing Polymorphism Is a Strong Predictor of Therapeutic Efficacy of Gemtuzumab Ozogamicin in De Novo AML: Report from COG-AAML0531 Study

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2743-2743
Author(s):  
Jatinder K Lamba ◽  
Lata Chauhan ◽  
Michael R. Loken ◽  
Jessica Pollard ◽  
Yi-Cheng Wang ◽  
...  

Abstract Gemtuzumab ozogamicin (GO), a CD33-targeted immunoconjugate, is a re-emerging as therapeutic for AML. We have previously discovered polymorphisms in CD33 coding region that might be associated with outcome in patients treated with GO. One particular coding polymorphism, CD33-SNP rs12459419-C>T (Ala14Val), is located within the splice enhancer region of exon-2, leading to expression of an alternate splice isoform lacking exon-2. This alternate splice isoform (D2-CD33), would encode a protein product lacking the IgV domain, which is the binding site for GO and most if not all CD33 antibodies used for diagnostic immunophenotyping. We therefore hypothesized that the SNP rs12459419 genotype would be associated with differential expression of the D2-CD33 transcript levels and differential cell surface CD33 expression leading to genotype determined differential response to GO. We evaluated the genotype frequency and functional significance of rs12459419, its association with CD33 cell-surface expression on leukemic blasts, and clinical response in 816 children and young adults with AML randomized to GO vs. No-GO in the COG trial AAML0531. The CD33 SNP rs12459419 genotype frequency was-CC=51%, CT=39% and TT=10% in patients, similar to the observed frequency in the general population. Correlation of SNP allele frequency with CD33 transcript levels and surface CD33 expression (as determined by p67.6 antibody) demonstrated that the T-allele was significantly associated with higher levels of D2-CD33 transcript (P=4.7e-11, Figure 1) and with lower diagnostic leukemic cell CD33 surface intensity (P=1.93e-29). Clinical outcome based on the SNP genotype demonstrated that patients with CC-genotype had significantly lower RR of 26%±7% in the GO arm whereas those in the No-GO arm had a RR of 49%±9% (HR=0.468, P<0.001). The corresponding DFS for CC genotype patients in the GO and No-GO arms was 65%±7% and 46%±9%, respectively (HR=0.597, P=0.004; Figure 1). In contrast, in those with heterozygous CT or homozygous TT genotype, GO exposure provided no clinical benefit in RR (CT: 38%±9% vs. 37±10%, P=0.975; TT: 46%±20% vs. 46%±20%, P=0.798) nor DFS (CT: 56%±9% vs. 60%±10% GO vs. No-GO, P=0.821; TT: 51%±20% vs. 54%±18%, GO vs. No-GO, P=0.972, Figure 1). We further evaluated the impact of the CD33 genotype on the efficacy of GO in different risk groups as well as in high vs. low CD33 expression cohorts. Patients in the low-risk (LR) group with the CC genotype treated with GO had a RR of 10%±8% vs. 37%±13% (P< 0.001) from remission. Standard-risk patients with CC genotype had a RR of 41±12% vs. 59±12% (P=0.056) and high-risk patients had a RR of 36%±27% vs. 70%±32% (P=0.073) for the GO and No-GO arms. In contrast there was no benefit of addition of GO in patients with the CT or TT genotypes within each risk group. Since CD33 expression has been recently associated with GO efficacy, we evaluated the association of rs12459419 genotypes in patients with low (N=153) and high CD33 (N=436) cell surface expression quartile-1 and quartiles-2-4, respectively. Significant improvement in RR was observed in patients with the CC genotype in the GO arm over those in the No-GO arm (P=0.001) within quartiles 2-4, but not with the CT/TT genotype (P=0.112). Within lower CD33 expression (quartile-1) cohort, a similar trend towards improvement in RR compared with those in the No-GO arm (P=0.055) was observed although the CC genotype was less frequent. Multivariate cox regression analysis that included genotype, risk status, and CD33 expression demonstrated that CD33 CC genotype was an independent predictor of response to GO (HR= 0.45, P<0.001 for RR and HR=0.57, P=0.003 for DFS). The rs12459419 genotype mediates expression of the GO binding site and informs on which patients should receive GO. The knowledge of CD33 genotype and prediction of response to GO provides opportunities to use patient genotypes for selecting CD33-targeted therapies. Given only half of the patients are expected to have a response to GO, we propose that all prior GO containing studies be re-evaluated for response based on patient CD33 genotype. The efficacy of GO in patients with an appropriate antibody binding domain also raises the possibility of developing next-generation CD33 immunoconjugates with epitopes targeted to regions not affected by alternative splicing and SNPs. Disclosures Loken: Hematologics: Employment, Equity Ownership.

Blood ◽  
2009 ◽  
Vol 113 (22) ◽  
pp. 5588-5598 ◽  
Author(s):  
Malgorzata Wygrecka ◽  
Leigh M. Marsh ◽  
Rory E. Morty ◽  
Ingrid Henneke ◽  
Andreas Guenther ◽  
...  

Abstract Cell surface–associated proteolysis plays a crucial role in the migration of mononuclear phagocytes to sites of inflammation. The glycolytic enzyme enolase-1 (ENO-1) binds plasminogen at the cell surface, enhancing local plasmin production. This study addressed the role played by ENO-1 in lipopolysaccharide (LPS)–driven chemokine-directed monocyte migration and matrix invasion in vitro, as well as recruitment of monocytes to the alveolar compartment in vivo. LPS rapidly up-regulated ENO-1 cell-surface expression on human blood monocytes and U937 cells due to protein translocation from cytosolic pools, which increased plasmin generation, enhanced monocyte migration through epithelial monolayers, and promoted matrix degradation. These effects were abrogated by antibodies directed against the plasminogen binding site of ENO-1. Overexpression of ENO-1 in U937 cells increased their migratory and matrix-penetrating capacity, which was suppressed by overexpression of a truncated ENO-1 variant lacking the plasminogen binding site (ENO-1ΔPLG). In vivo, intratracheal LPS application in mice promoted alveolar recruitment of monocytic cells that overexpressed ENO-1, but not of cells overexpressing ENO-1ΔPLG. Consistent with these data, pneumonia-patients exhibited increased ENO-1 cell-surface expression on blood monocytes and intense ENO-1 staining of mononuclear cells in the alveolar space. These data suggest an important mechanism of inflammatory cell invasion mediated by increased cell-surface expression of ENO-1.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3942-3942
Author(s):  
Katherine Tarlock ◽  
Zixing Wang ◽  
Rory Rohm ◽  
Travis Biechele ◽  
Rhonda E. Ries ◽  
...  

Abstract The cell surface antigen CD33 is expressed on the majority of AML blasts and is appropriate for immunotherapeutic targeting with antibody drug conjugates (ADCs). Expression of CD33 is in part mediated by splicing of the CD33 transcript, and has been demonstrated to be one of the factors that may mediate response to the ADC gemtuzumab ozogamicin, which results in significant benefit in some patients but lacks responses in others. Splicing of the CD33 transcript is in part regulated by a single nucleotide polymorphism (SNP) in exon 2 (e2) that causes a C>T substitution and the resultant skipping of e2. CD33 thus exists in 2 main isoforms, as either a full length (FL) transcript or a truncated version missing e2 (Δe2), which includes the IgV binding domain that is the epitope for diagnostic and therapeutic antibodies (Ab). The CC genotype encodes the FL isoform at a higher rate compared to the CT or TT, and the TT genotype encodes the short isoform at a higher rate compared to CT or CC. SGN-CD33A is a CD33-directed ADC, utilizing a pyrolobenzodiazepine (PBD) dimer. SGN-CD33A has been evaluated in multiple clinical trials as either monotherapy or in combination. We hypothesized that the patient's CD33 genotype would impact CD33 expression as well as response characteristics following treatment with SGN-CD33A. We analyzed CD33 genotype variation in bone marrow (BM) or peripheral blood (PB) samples from patients treated with SGN-33A as either monotherapy (NCT01902329; n=133) or in combination with hypomethylating agents (HMAs; NCT02785900; n=83). CD33 SNP genotyping was determined on gDNA using RFLP PCR with 2 restriction enzymes recognizing cut sites generated by the C and T polymorphisms and genotype confirmed using fragment length analysis (CC=108, CT=86, TT=22). CD33 surface expression on the AML blasts was determined by flow cytometric analysis using the human anti-CD33 monoclonal Abs HIM3-4 and H212, which bind to the membrane-proximal C2-set and V-set domain, respectively. HIM-34 measured CD33 levels independent of SNP-driven splice variation. The h2H12 epitope is within e2, thus its binding may be susceptible to splice variation. We subsequently evaluated the association of CD33 genotype with pharmacokinetic (PK), clinical and other variables using a generalized regression model. Patients classified as CC genotype had significantly higher surface CD33 expression as determined by flow cytometry in both BM and PB. In accordance with observed differences in CD33 expression, we also found drug exposure demonstrated an inverse relationship according to CC genotype in both mono and combination therapy trials. For monotherapy, compared to patients with CC and CT genotypes, patients with TT genotypes had significantly higher drug exposure following SGN-CD33A. Patients with TT had higher AUCs following the first and last doses of SGN-33A (p < 10-4 -; Fig 1). Cmax following SGN-CD33A exposure was higher in TT genotype patients compared to the CT and CC (p< 10-1.5 for Cmax following the first dose and p<10-1.6 for Cmax over all treatments;Fig 1). In combination with HMAs, the TT genotype was also associated with significantly higher SGN-CD33A AUC and Cmax (p-values ranging from 10-3.3 - 10-9.7). We next examined expression and subcellular localization of CD33 to elucidate the mechanism by CD33 variation contributes to cell surface presentation. Transfection of cDNA encoding the FL CD33 transcript resulted in increased cell surface expression, as indicated by flow cytometry with both HIM3-4 and h2H12. In contrast, both Abs failed to detect cell surface CD33 following transfection with cDNA encoding the Δe2 variant. Examination of the intracellular compartment revealed that HIM3-4, but not 2H12, binds to the Δe2 variant in a pattern localized proximal to the nucleus. Taken together, our findings suggest that the Δe2 splice CD33 variant lacks the portion of the V-set domain required for h2H12/SGN-CD33A binding and does not efficiently traffic to the cell surface. We show that CD33 SNP genotype is associated with CD33 expression, with CC patients demonstrating higher CD33 as detected by flow cytometry; and that CD33 SNP genotype affects the PK profile of SGN-CD33A, with TT patients having higher levels of drug exposure. Our findings suggest that the CD33 genotype can impact CD33 expression, PK profile, and trafficking of bound agents and thus may impact therapeutic targeting of CD33-directed agents. Disclosures Wang: Seattle Genetics: Employment, Equity Ownership. Rohm:Seattle Genetics: Employment, Equity Ownership. Biechele:Seattle Genetics: Employment, Equity Ownership. Means:Seattle Genetics: Employment, Equity Ownership. Thurman:Seattle Genetics: Employment, Equity Ownership. Arthur:Seattle Genetics: Employment, Equity Ownership.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2247-2247
Author(s):  
Mohammed O Gbadamosi ◽  
Vivek M. Shastri ◽  
Soheil Meshinchi ◽  
Jatinder K. Lamba

Abstract Background CD33 is a myeloid-specific cell surface protein widely expressed on acute myeloid leukemia (AML) cells making it an excellent immunotherapeutic target. Current CD33-directed immunotherapeutic treatment strategies include gemtuzumab ozogamicin (GO), an antibody-drug conjugate (ADC) which was approved for the treatment AML in 2017 and has demonstrated promising results thus far. The mechanism of action of GO begins with recognition of CD33 by the antibody portion of GO, followed by internalization of the CD33-GO complex, and finally delivery of free calicheamicin molecules to the cell to induce cellular apoptosis. As such, modifications that impact these steps on any level presumably impact the response and overall efficacy of GO. Indeed, previous studies from our group have identified germline variations in CD33 that are associated with differences in CD33 structure, CD33 cell surface expression levels, and clinical outcomes in response to GO. Among these germline variations is rs35112940 (G&gt;A; Arg304Gly), a missense polymorphism which is located in exon five of CD33 adjacent to the cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM) domain, a critical feature for CD33 internalization. While our previous work identified statistical associations between the A allele of rs35112940 and lower CD33 expression and reduced benefit from treatment using GO, these results are yet to be validated functionally. Additionally, it still remains unknown if the impact of the rs35112940 variation is due to reduced CD33 expression alone or if the rs35112940 variation also impacts CD33 internalization thereby modulating CD33 efficacy. Methods To functionally validate the effect of the rs35112940 variant, we used CRISPR/cas9 to knockout CD33 in HL60 cells and subsequently engineered the HL60-CD33 KO cells to express either wildtype CD33 (HL60-CD33 FL) or CD33 encoding the rs35112940 variant (HL60-CD33 FL-rs35112940). The engineered cells were then treated with GO for 48 hours to capture the impact of the rs35112940 variation on the efficacy of GO. To assess the impact of the rs35112940 variation on CD33 internalization, we performed a flow cytometry-based internalization assay using secondary antibodies to capture the remaining amounts of CD33 present on the cell surface after 4 hours allowing us to determine the internalization of CD33 over time. Results All engineered cells expressed CD33 with less than 1-log fold difference in median fluorescence intensity (MFI) (HL60-CD33 FL MFI vs HL60-CD33 FL-rs35112940 MFI: 22536 vs 24882, Figure 1) and thus we were able to characterize the impact of the rs35112940 variant independent of its impact on CD33 cell surface expression. After 48-hour treatment with 250 ng/mL of GO, we observed that HL60-CD33 FL-rs35112940 cells were more resistant to GO than HL60-CD33 FL cells (66.4% vs 46.5% cell viability, P = 0.02, Figure 2A). Similar results were observed at multiple concentrations of GO. Given the proximity of the rs35112940 loci to the ITIM domain of CD33, we hypothesized that the rs35112940 variation may impact CD33 internalization as well. In a flow cytometry-based internalization assay over a 4-hour window, we observed that that HL60-CD33 FL-rs35112940 cells had an approximate 10% reduction in CD33 internalization in comparison to HL60-CD33 FL cells (Figure 2B). Taken together these results provide insight into the effect of the rs35112940 variant on GO efficacy and CD33 biology, corroborating our previous findings, and support the use of CD33 polymorphisms to guide patient selection for treatment with GO. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4145-4145
Author(s):  
Yuji Mishima ◽  
Yasuhito Terui ◽  
Yuko Mishima ◽  
Kiyohiko Hatake

Abstract Abstract 4145 [Introduction] Recently, we reported that gene mutations of CD20 were involved in resistance to rituximab therapy, and we proposed that C-terminal deletion mutations of CD20 might be related to relapse/resistance after rituximab therapy. Many of these cases were diagnosed as CD20 negative by the immunohistochemical analysis using the L26 monoclonal antibody used routinely in most clinical laboratories. L26 recognizes the cytoplasmic region of CD20 molecules, but no more detailed information about its epitope had been reported. So, we could not distinguish whether protein expression of CD20 extremely decreased or whether the epitope of the antibody was lost by these mutations. To make this clear, we determined the binding site of L26 antibody on CD20 protein in the present study. In addition, we developed new antibodies that recognize amino acid sequence close to the amino terminal of CD20 molecule. Then we investigated clinical specimens with these antibodies together with L26 to elucidate characteristics of CD20 molecules having C-terminal mutations. [Methods] To determine the binding site of L26 antibody on CD20, we made a series of constructs of the CD20 molecules with deletion mutations in the C-terminal cytoplasmic domain and introduced them into retrovirus vectors. A CD20 negative multiple myeloma cell line, KMS12PE cells were then transformed, and we established six kinds of sub-lines with the various C-terminal deletion mutations of CD20 and used them for epitope-mapping. On the other hand, we screened the CD20 gene sequence of the clinical specimen of rituximab-resistant patients and identified several cases with the mutation in the C-terminal cytoplasm region. The immunochemistry using L26 and newly developed antibodies, as well as membrane expression of CD20 molecules using the rituximab were analyzed. [Results] The epitope analysis of L26 antibody using a series of CD20 deletion mutations revealed that L26 recognizes near the C-terminus of CD20 cytoplasmic region. These results showed that most of CD20 molecules with the C-terminal deletion mutation and frame-shift mutation could not be recognized by L26. The immunohistochemical analysis performed for clinical specimens revealed that the cells that were stained by antibodies recognizing N-terminal region of CD20 but not by L26 were indeed included in some rituximab-resistant cases. DNA sequencing analysis revealed that all these cases had mutated CD20 genes in its C-terminal cytoplasmic region. In addition, a cell-surface expression analysis using flowcytometry demonstrated that the cells having these mutations has reduced cell surface expression of CD20 compared with those of normal CD20. [Discussion] In this study, we determined the recognition site of L26 and demonstrated that L26 couldn't recognize CD20 with the resistant mutations. In contrast, newly developed antibodies against N-terminal region of CD20 could stain even these CD20 molecules. These results suggest that combination use of these antibodies and L26 enables to detect the onset of irreversible rituximab-resistant clones with the CD20 mutations. Disclosures: Hatake: Chugai Pharmaceutical Co., Ltd: Honoraria, Research Funding.


2020 ◽  
Author(s):  
Florent Colomb ◽  
Leila B. Giron ◽  
Leticia Kuri Cervantes ◽  
Tongcui Ma ◽  
Samson Adeniji ◽  
...  

Author(s):  
Mona Aslani ◽  
Arman Ahmadzadeh ◽  
Zahra Aghazadeh ◽  
Majid Zaki-Dizaji ◽  
Laleh Sharifi ◽  
...  

Background: : Based on the encouraging results of phase III clinical trial of β-D-mannuronic acid (M2000) (as a new anti-inflammatory drug) in patients with RA, in this study, we aimed to evaluate the effects of this drug on the expression of chemokines and their receptors in PBMCs of RA patients. Methods:: PBMCs of RA patients and healthy controls were separated and the patients' cells were treated with low, moderate and high doses (5, 25 and 50 μg/mL) of M2000 and optimum dose (1 μg/mL) of diclofenac, as a control in RPMI-1640 medium. Real-time PCR was used for evaluating the mRNA expression of CXCR3, CXCR4, CCR2, CCR5 and CCL2/MCP-1. Cell surface expression of CCR2 was investigated using flow cytometry. Results:: CCR5 mRNA expression reduced significantly, after treatment of the patients' cells with all three doses of M2000 and optimum dose of diclofenac. CXCR3 mRNA expression down-regulated significantly followed by treatment of these cells with moderate and high doses of M2000 and optimum dose of diclofenac. CXCR4 mRNA expression declined significantly after treatment of these cells with moderate and high doses of M2000. CCL2 mRNA expression significantly reduced only followed by treatment of these cells with high dose of M2000, whereas, mRNA and cell surface expressions of CCR2 diminished significantly followed by treatment of these cells with high dose of M2000 and optimum dose of diclofenac. Conclusion:: According to our results, M2000 through the down-regulation of chemokines and their receptors may restrict the infiltration of immune cells into the synovium.


1990 ◽  
Vol 64 (10) ◽  
pp. 4776-4783 ◽  
Author(s):  
M E Andrew ◽  
D B Boyle ◽  
P L Whitfeld ◽  
L J Lockett ◽  
I D Anthony ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document