Anti-N-Terminal CD20 Monoclonal Antibody and L26 Dual Staining Identifies An Irreversible Resistant Mutant Genes

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4145-4145
Author(s):  
Yuji Mishima ◽  
Yasuhito Terui ◽  
Yuko Mishima ◽  
Kiyohiko Hatake

Abstract Abstract 4145 [Introduction] Recently, we reported that gene mutations of CD20 were involved in resistance to rituximab therapy, and we proposed that C-terminal deletion mutations of CD20 might be related to relapse/resistance after rituximab therapy. Many of these cases were diagnosed as CD20 negative by the immunohistochemical analysis using the L26 monoclonal antibody used routinely in most clinical laboratories. L26 recognizes the cytoplasmic region of CD20 molecules, but no more detailed information about its epitope had been reported. So, we could not distinguish whether protein expression of CD20 extremely decreased or whether the epitope of the antibody was lost by these mutations. To make this clear, we determined the binding site of L26 antibody on CD20 protein in the present study. In addition, we developed new antibodies that recognize amino acid sequence close to the amino terminal of CD20 molecule. Then we investigated clinical specimens with these antibodies together with L26 to elucidate characteristics of CD20 molecules having C-terminal mutations. [Methods] To determine the binding site of L26 antibody on CD20, we made a series of constructs of the CD20 molecules with deletion mutations in the C-terminal cytoplasmic domain and introduced them into retrovirus vectors. A CD20 negative multiple myeloma cell line, KMS12PE cells were then transformed, and we established six kinds of sub-lines with the various C-terminal deletion mutations of CD20 and used them for epitope-mapping. On the other hand, we screened the CD20 gene sequence of the clinical specimen of rituximab-resistant patients and identified several cases with the mutation in the C-terminal cytoplasm region. The immunochemistry using L26 and newly developed antibodies, as well as membrane expression of CD20 molecules using the rituximab were analyzed. [Results] The epitope analysis of L26 antibody using a series of CD20 deletion mutations revealed that L26 recognizes near the C-terminus of CD20 cytoplasmic region. These results showed that most of CD20 molecules with the C-terminal deletion mutation and frame-shift mutation could not be recognized by L26. The immunohistochemical analysis performed for clinical specimens revealed that the cells that were stained by antibodies recognizing N-terminal region of CD20 but not by L26 were indeed included in some rituximab-resistant cases. DNA sequencing analysis revealed that all these cases had mutated CD20 genes in its C-terminal cytoplasmic region. In addition, a cell-surface expression analysis using flowcytometry demonstrated that the cells having these mutations has reduced cell surface expression of CD20 compared with those of normal CD20. [Discussion] In this study, we determined the recognition site of L26 and demonstrated that L26 couldn't recognize CD20 with the resistant mutations. In contrast, newly developed antibodies against N-terminal region of CD20 could stain even these CD20 molecules. These results suggest that combination use of these antibodies and L26 enables to detect the onset of irreversible rituximab-resistant clones with the CD20 mutations. Disclosures: Hatake: Chugai Pharmaceutical Co., Ltd: Honoraria, Research Funding.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1550-1550
Author(s):  
Yuji Mishima ◽  
Yasuhito Terui ◽  
Kengo Takeuchi ◽  
Yuko Mishima ◽  
Kiyohiko Hatake

Abstract Abstract 1550 Background: We previously reported that mutations of CD20 gene were found in patients with B-cell non-Hodgkin's lymphoma, and we proposed that C-terminal deletion mutations of CD20 might be involved in relapse/resistance after rituximab containing therapy. Most of the patients that had mutation in the C-terminal leagion were diagnosed as CD20 negative by immunohistochemistry using L26 monoclonal antibody. L26 recognizes the cytoplasmic region of CD20 molecules, but no more detailed information about its epitope had been reported. So at first we determined the binding site of L26 antibody on CD20 protein. Then we developed novel diagnostic antibodies that recognize wide variety of CD20 molecular subtypes including those having mutations. Methods: To determine the epitope of L26 antibody, we established six sub-lines expressing various length of C-terminal truncated CD20 using an originally CD20 negative myeloma cell line. Then we carried out epitope-mapping using these cell lines. To detect comprehensive CD20 molecules including that having mutation in C-terminal region, we developed antibodies that recognize near the amino terminus of CD20 molecules (CD20N antibody). CD20N antibody is the only monoclonal antibody that recognizes N-terminal region of CD20 so far. Using these antibodies, we screened the specimens of the cases diagnosed as CD20 negative determined by L26-based immunohistochemistry. Results: The epitope-mapping revealed that L26 recognizes near the C-terminus of CD20. This suggested that most of CD20 molecules with the C-terminal deletion mutation or frame-shift mutation could not be recognized by L26. Then we screened previously diagnosed specimens and found several cases that having the cells stained by our novel antibody but not by L26. Genetic analysis revealed that all these cells had a mutation in the C-terminal cytoplasmic region of CD20. One of these cases, we successfully analyzed the phenotype of lymphoma cells with mutated CD20 in detail using cryopreserves living specimens. In this case, a frame shift mutation occurred due to one base nucleotide deletion, resulting in the translation of peptide of another reading frame of 41 amino acids with premature stop at the amino acid position 250. Interestingly, mutant CD20 molecule expressed adjacent to the plasma membrane, but rituximab could not bind to these cells. DNA sequencing study about genome and mRNA of CD20 gene suggested that the lymphoma cells of this patient had one normal and one mutated CD20 allele. Discussions: The C-terminal region of CD20 may undertake a pivotal role in presentation of the large loop where the rituximab binding site locates. Thus, deletion or frame-shift mutation of CD20 in C-terminal cytoplasmic region impairs the antigenicity against rituximab and it may cause resistance to rituximab therapy. The resistance caused by gene mutation thought to be irreversible. And it should be discriminated from transient downregulation of antigen expression. We propose here that immunohistochemical screening using CD20N antibody is very rapid and effective screening stategy that find out irreversible rituximab resistant cases. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2743-2743
Author(s):  
Jatinder K Lamba ◽  
Lata Chauhan ◽  
Michael R. Loken ◽  
Jessica Pollard ◽  
Yi-Cheng Wang ◽  
...  

Abstract Gemtuzumab ozogamicin (GO), a CD33-targeted immunoconjugate, is a re-emerging as therapeutic for AML. We have previously discovered polymorphisms in CD33 coding region that might be associated with outcome in patients treated with GO. One particular coding polymorphism, CD33-SNP rs12459419-C>T (Ala14Val), is located within the splice enhancer region of exon-2, leading to expression of an alternate splice isoform lacking exon-2. This alternate splice isoform (D2-CD33), would encode a protein product lacking the IgV domain, which is the binding site for GO and most if not all CD33 antibodies used for diagnostic immunophenotyping. We therefore hypothesized that the SNP rs12459419 genotype would be associated with differential expression of the D2-CD33 transcript levels and differential cell surface CD33 expression leading to genotype determined differential response to GO. We evaluated the genotype frequency and functional significance of rs12459419, its association with CD33 cell-surface expression on leukemic blasts, and clinical response in 816 children and young adults with AML randomized to GO vs. No-GO in the COG trial AAML0531. The CD33 SNP rs12459419 genotype frequency was-CC=51%, CT=39% and TT=10% in patients, similar to the observed frequency in the general population. Correlation of SNP allele frequency with CD33 transcript levels and surface CD33 expression (as determined by p67.6 antibody) demonstrated that the T-allele was significantly associated with higher levels of D2-CD33 transcript (P=4.7e-11, Figure 1) and with lower diagnostic leukemic cell CD33 surface intensity (P=1.93e-29). Clinical outcome based on the SNP genotype demonstrated that patients with CC-genotype had significantly lower RR of 26%±7% in the GO arm whereas those in the No-GO arm had a RR of 49%±9% (HR=0.468, P<0.001). The corresponding DFS for CC genotype patients in the GO and No-GO arms was 65%±7% and 46%±9%, respectively (HR=0.597, P=0.004; Figure 1). In contrast, in those with heterozygous CT or homozygous TT genotype, GO exposure provided no clinical benefit in RR (CT: 38%±9% vs. 37±10%, P=0.975; TT: 46%±20% vs. 46%±20%, P=0.798) nor DFS (CT: 56%±9% vs. 60%±10% GO vs. No-GO, P=0.821; TT: 51%±20% vs. 54%±18%, GO vs. No-GO, P=0.972, Figure 1). We further evaluated the impact of the CD33 genotype on the efficacy of GO in different risk groups as well as in high vs. low CD33 expression cohorts. Patients in the low-risk (LR) group with the CC genotype treated with GO had a RR of 10%±8% vs. 37%±13% (P< 0.001) from remission. Standard-risk patients with CC genotype had a RR of 41±12% vs. 59±12% (P=0.056) and high-risk patients had a RR of 36%±27% vs. 70%±32% (P=0.073) for the GO and No-GO arms. In contrast there was no benefit of addition of GO in patients with the CT or TT genotypes within each risk group. Since CD33 expression has been recently associated with GO efficacy, we evaluated the association of rs12459419 genotypes in patients with low (N=153) and high CD33 (N=436) cell surface expression quartile-1 and quartiles-2-4, respectively. Significant improvement in RR was observed in patients with the CC genotype in the GO arm over those in the No-GO arm (P=0.001) within quartiles 2-4, but not with the CT/TT genotype (P=0.112). Within lower CD33 expression (quartile-1) cohort, a similar trend towards improvement in RR compared with those in the No-GO arm (P=0.055) was observed although the CC genotype was less frequent. Multivariate cox regression analysis that included genotype, risk status, and CD33 expression demonstrated that CD33 CC genotype was an independent predictor of response to GO (HR= 0.45, P<0.001 for RR and HR=0.57, P=0.003 for DFS). The rs12459419 genotype mediates expression of the GO binding site and informs on which patients should receive GO. The knowledge of CD33 genotype and prediction of response to GO provides opportunities to use patient genotypes for selecting CD33-targeted therapies. Given only half of the patients are expected to have a response to GO, we propose that all prior GO containing studies be re-evaluated for response based on patient CD33 genotype. The efficacy of GO in patients with an appropriate antibody binding domain also raises the possibility of developing next-generation CD33 immunoconjugates with epitopes targeted to regions not affected by alternative splicing and SNPs. Disclosures Loken: Hematologics: Employment, Equity Ownership.


2008 ◽  
Vol 295 (1) ◽  
pp. G16-G26 ◽  
Author(s):  
Mubeen Jafri ◽  
Bryan Donnelly ◽  
Steven Allen ◽  
Alex Bondoc ◽  
Monica McNeal ◽  
...  

Inoculation of BALB/c mice with rhesus rotavirus (RRV) in the newborn period results in biliary epithelial cell (cholangiocyte) infection and the murine model of biliary atresia. Rotavirus infection of a cell requires attachment, which is governed in part by cell-surface expression of integrins such as α2β1. We hypothesized that cholangiocytes were susceptible to RRV infection because they express α2β1. RRV attachment and replication was measured in cell lines derived from cholangiocytes and hepatocytes. Flow cytometry was performed on these cell lines to determine whether α2β1 was present. Cholangiocytes were blocked with natural ligands, a monoclonal antibody, or small interfering RNA against the α2-subunit and were infected with RRV. The extrahepatic biliary tract of newborn mice was screened for the expression of the α2β1-integrin. Newborn mice were pretreated with a monoclonal antibody against the α2-subunit and were inoculated with RRV. RRV attached and replicated significantly better in cholangiocytes than in hepatocytes. Cholangiocytes, but not hepatocytes, expressed α2β1 in vitro and in vivo. Blocking assays led to a significant reduction in attachment and yield of virus in RRV-infected cholangiocytes. Pretreatment of newborn pups with an anti-α2 monoclonal antibody reduced the ability of RRV to cause biliary atresia in mice. Cell-surface expression of the α2β1-integrin plays a role in the mechanism that confers cholangiocyte susceptibility to RRV infection.


Blood ◽  
2009 ◽  
Vol 114 (14) ◽  
pp. 3052-3055 ◽  
Author(s):  
Lyn R. Ambrose ◽  
Anne-Sophie Morel ◽  
Anthony N. Warrens

Neutropenia is a recognized adverse event in patients treated with the humanized anti-CD52 monoclonal antibody alemtuzumab. However, as it is widely believed that neutrophils do not express CD52, the etiology of alemtuzumab-associated neutropenia is unclear. We have found that neutrophils express both mRNA coding for CD52 and the protein itself on the cell surface. We confirmed cell-surface expression using 3 different anti-CD52 antibodies, and note that neutrophils express lower levels of CD52 than lymphocytes and eosinophils. Further, incubation of alemtuzumab with neutrophils results in dose-dependent, complement-mediated lysis in the presence of both heterologous and autologous complement. These data offer an explanation for the etiology of alemtuzumab-associated neutropenia. In a climate of increased use of alemtuzumab in leukemia and other disease states, as well as in transplantation, these data highlight the need for increased vigilance of emerging neutropenia in patients treated with alemtuzumab.


2009 ◽  
Vol 343 (1) ◽  
pp. 28-41 ◽  
Author(s):  
Paul W. Price ◽  
Elizabeth C. McKinney ◽  
Youliang Wang ◽  
Loren E. Sasser ◽  
Muthugapatti K. Kandasamy ◽  
...  

2002 ◽  
Vol 366 (1) ◽  
pp. 353-365 ◽  
Author(s):  
Andrew M. WOODS ◽  
Who W. WANG ◽  
David M. SHAW ◽  
Christopher M. WARD ◽  
Miles W. CARROLL ◽  
...  

Human 5T4 oncofoetal antigen defined by the murine 5T4 monoclonal antibody is a highly glycosylated protein expressed by trophoblast and a few specialized adult epithelia. Up-regulation of 5T4 expression in some cancers is associated with poor clinical outcome; overexpression of human 5T4 cDNA in epithelial cells can alter their morphology and motility, supporting a role for such functions in cancer and development. A murine model to study 5T4 biology and tumour immunology would be useful. The production of m5T4-specific antibodies, their use in establishing transfected cells and documenting their biological properties in vitro are described. A rat monoclonal antibody specific for mouse 5T4 molecules by ELISA, flow cytometry, immunohistochemistry and immunoprecipitation was isolated and epitope mapped. Similar to its human counterpart, murine 5T4 antigen is a 72kDa glycoprotein (immunoprecipitation and Western blot analysis) and exhibits punctate cell surface expression, dependent upon the integrity of the actin cytoskeleton. Likewise, overexpression of autologous murine 5T4 by B16 F10 melanoma cells and A9 L fibroblasts accentuates the 5T4 phenotype, which is characterized by a spindle-like morphology, increased motility, and reduced adhesion and proliferation rate. Immunohistochemical analysis of adult mouse tissues shows a restricted pattern of expression similar to that of human 5T4 antigen. The murine 5T4 antigen-expressing cell lines and antibody reagents are now being used to explore novel immunotherapies in pre-clinical models and the biology of 5T4 in development.


Blood ◽  
2009 ◽  
Vol 113 (22) ◽  
pp. 5588-5598 ◽  
Author(s):  
Malgorzata Wygrecka ◽  
Leigh M. Marsh ◽  
Rory E. Morty ◽  
Ingrid Henneke ◽  
Andreas Guenther ◽  
...  

Abstract Cell surface–associated proteolysis plays a crucial role in the migration of mononuclear phagocytes to sites of inflammation. The glycolytic enzyme enolase-1 (ENO-1) binds plasminogen at the cell surface, enhancing local plasmin production. This study addressed the role played by ENO-1 in lipopolysaccharide (LPS)–driven chemokine-directed monocyte migration and matrix invasion in vitro, as well as recruitment of monocytes to the alveolar compartment in vivo. LPS rapidly up-regulated ENO-1 cell-surface expression on human blood monocytes and U937 cells due to protein translocation from cytosolic pools, which increased plasmin generation, enhanced monocyte migration through epithelial monolayers, and promoted matrix degradation. These effects were abrogated by antibodies directed against the plasminogen binding site of ENO-1. Overexpression of ENO-1 in U937 cells increased their migratory and matrix-penetrating capacity, which was suppressed by overexpression of a truncated ENO-1 variant lacking the plasminogen binding site (ENO-1ΔPLG). In vivo, intratracheal LPS application in mice promoted alveolar recruitment of monocytic cells that overexpressed ENO-1, but not of cells overexpressing ENO-1ΔPLG. Consistent with these data, pneumonia-patients exhibited increased ENO-1 cell-surface expression on blood monocytes and intense ENO-1 staining of mononuclear cells in the alveolar space. These data suggest an important mechanism of inflammatory cell invasion mediated by increased cell-surface expression of ENO-1.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2490-2490 ◽  
Author(s):  
Evdoxia Hatjiharissi ◽  
Allen W. Ho ◽  
Lian Xu ◽  
Kelly E. O’Connor ◽  
Zachary R. Hunter ◽  
...  

Abstract Introduction: WM is a B-cell disorder characterized by bone marrow (BM) infiltration of lymphoplasmacytic cells (LPC), along with excess mast cells (MC) which support the growth and survival of BM LPC through multiple TNF-family ligands including CD40L, APRIL and BLyS/BAFF. Importantly, BM LPC stimulate cell surface expression of TNF-family ligands through release of sCD27 which induces CD70 on MC. We therefore have sought the development of agents which could target CD27-CD70 interactions. As such, we examined the therapeutic potential of directly targeting CD70 using the fully humanized monoclonal antibody SGN-70 (Seattle Genetics, Inc., Bothell WA). Methods-Results: As part of these studies, we used flow cytometric analysis to evaluate the expression of CD70 on primary WM patient BM LPC and MC, as well as 2 WM cell lines (BCWM.1 and WM-WSU). These studies demonstrated cell surface expression of CD70 on BM LPC and MC from 20/26 (77%) and 10/11 (90%) WM patients, respectively. We next assessed the ability of the SGN-70 antibody to eradicate primary WM LPC (n=5) and WM cell lines by assessing for direct induction of apoptosis, complement dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC) as well as induction of TNF family ligands on primary WM MC and the LAD2 MC line. Following incubation of WM LPC with SGN-70 (0.01–20 μg/ml), no direct induction of apoptosis or CDC activity was observed. However, SGN-70 mediated significant dose-dependent ADCC against WM LPC and MC at concentrations of 0.1–20 ug/ml. Importantly, SGN-70 blocked sCD27-induced expression of CD40L and APRIL on primary WM MC and LAD2 MC. To further evaluate the therapeutic potential of SGN-70 in an in vivo model, SCID-hu mice bearing BCWM.1 WM cells were treated with SGN-70 (1 mg/kg, i.p., qOD) Serum human IgM and sCD27 levels were measured by ELISA to monitor for tumor engraftment and disease progression. SGN-70 initiated 6 weeks following tumor engraftment blocked tumor growth in 12/12 treated mice, whereas all 5 untreated mice demonstrated disease progression. The results of these studies provide the framework for clinical trials to examine the therapeutic potential of the SGN-70 monoclonal antibody in WM.


Sign in / Sign up

Export Citation Format

Share Document