scholarly journals Chromosome Studies in Normal and Leukemic Rats

Blood ◽  
1964 ◽  
Vol 23 (5) ◽  
pp. 564-571 ◽  
Author(s):  
G. DOWD ◽  
K. DUNN ◽  
WILLIAM C. MOLONEY

Abstract 1. Adequate chromosome preparations were obtained in 70 per cent of normal rat peripheral blood cell cultures. However, cultures of peripheral blood cells from leukemic rats were almost universally unsuccessful. 2. In x-ray- and 3MCA-induced leukemias direct bone marrow preparations provided adequate metaphases in eight of 12 cases. Failures were attributed in four cases to scanty material obtained from fibrotic marrows. 3. No consistent chromosome abnormalities, such as those reported in human myelogenous leukemia, were found in these leukemic rats. However, the series of cases is small, and species differences and other factors may have influenced the results of these studies.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 564-564
Author(s):  
Heike Kroeger ◽  
Jaroslav Jelinek ◽  
Carlos E. Bueso-Ramos ◽  
Jean-Pierre J. Issa

The role of DNA methylation in relapse and progression of acute myelogenous leukemia (AML) is incompletely understood. We studied DNA methylation of 9 promoter-associated CpG islands of genes frequently hypermethylated in leukemic cell lines. These were NOR1, NPM2, HIN1, SLC26A4, CDH13, PGRA, PGRB, OLIG2 and the tumor suppressor gene p15INK4b. We examined bone marrow and/or peripheral blood cells collected at the time of diagnosis and at the first relapse from 32 patients (13 females, 19 males) with AML. The median age was 58 years (20–68), the median survival was 18 months (8–80), the median blast count was 64% (20–98), and 10 patients had additional solid tumors and/or lymphatic/hematologic malignancies. Bisulfite treatment of DNA, followed by PCR and pyrosequencing were used to quantitatively measure levels of cytosine methylation in promoter-associated CpG islands. We analyzed methylation data for individual genes and for a methylation index derived after Z-score (z = [value –mean]/standard deviation) transformation to equalize absolute differences between individual genes and we used paired t-tests for statistical analysis. Abnormal hypermethylation (≥10%) in bone marrow and peripheral blood cells at diagnosis was detected in all 9 investigated genes, with a range of 7/29 (24%) for HIN1 to 24/32 (75%) for CDH13. On average, an increase in methylation between diagnosis and relapse was detected in all genes, and was significant for CDH13 (mean 10%, p=0.0006), SLC26A4 (mean 7%, p=0.0012), HIN1 (mean 8%, p=0.0037), NPM2 (mean 7%, p=0.0073), p15INK4b (mean 13%, p=0.0081), NOR1 (mean 4%, p=0.0124), PGRB (mean 6%, p=0.0144), PGRA (mean 9%, p=0.0275), and OLIG2 (mean 3%, p=0.0732). When analyzed by change in methylation status: negative (methylation below 10%) turning positive (methylation ≥ 10%) and vice versa, of 238 analyses, 39 (16%) showed a negative to positive switch, 15 (6%) showed a positive to negative switch, and the remaining 184 (77%) were either positive or negative unchanged. Finally, when analyzed in individual patients, an increase in methylation was noted in 29 of 32 patients (91%). The median increase in methylation index between diagnosis and relapse calculated as a delta-Z-score was 30% (range from −10% to 147%), and was highly significant (p<0.0001). In summary, abnormal hypermethylation in bone marrow and/or peripheral blood cells from AML patients was detected in all investigated genes at diagnosis. Methylation levels further increased at relapse of the disease in 29 of 32 patients in 1 to 8 of 9 investigated genes. Based on quantitative analyses, we propose that methylation of CDH13, PGRB, PGRA and OLIG2 CpG islands are early markers for AML, while hypermethylation of HIN1, NPM2 and p15INK4b CpG islands is associated with disease progression and predominantly appears at relapse. Thus, aberrant hypermethylation is clearly associated with disease progression and relapse in AML, and likely mediates drug resistance in this setting. Increase of Methylation Index in Relapse Increase of Methylation Index in Relapse


2001 ◽  
Vol 344 (3) ◽  
pp. 175-181 ◽  
Author(s):  
William I. Bensinger ◽  
Paul J. Martin ◽  
Barry Storer ◽  
Reginald Clift ◽  
Steven J. Forman ◽  
...  

2020 ◽  
Vol 20 (9) ◽  
pp. 1419-1433
Author(s):  
Constantin Bodolea ◽  
Elisabeta I. Hiriscau ◽  
Elena-Cristina Buzdugan ◽  
Alin I. Grosu ◽  
Laurențiu Stoicescu ◽  
...  

Background: Frailty syndrome is characterized by multisystem dysregulation frequently found in older individuals or even in younger patients with chronic disabling diseases such as cardiovascular diseases. Objective: To determine whether peripheral blood cell count, and its subpopulations, red blood cell and platelets, morphology and different ratios (neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio and red blood distribution width-to-platelet ratio) are associated with cardiac frail patients, and through this to improve the prediction of frailty status in patients with cardiovascular diseases. Methods: An observational, retrospective, cohort study enrolling 179 patients with cardiovascular disease divided into two groups: non-frail group (100 pts) and frail group (79 pts), a cohort detached from the Frail.RO study. The frailty was evaluated based on the Fried criteria; haematological markers, sociodemographic data, and variables related to cardiovascular diseases and comorbidities were also recorded. Results: Lower lymphocytes, platelet count, and neutrophil-to-lymphocyte ratio were significantly associated with a more severe frailty syndrome. Regarding red blood cells, haemoglobin concentration and red cell distribution width significantly correlated with the severity of the frailty syndrome. Receiver operating characteristic curve analysis for these markers associated with the frailty syndrome revealed an acceptable sensitivity of 66 % and specificity of 65% to identify frail individuals. Malnutrition and hypercholesterolemia are relevant predictors for identifying frailty in hospitalized cardiovascular patients. Conclusion: The evaluation of peripheral blood cell composition routinely measured in clinical practice can represent a valuable, but limited indicator, to diagnose frailty syndrome and eventually, the effects of interventions in frail patients with cardiovascular diseases.


1970 ◽  
Vol 29 (2) ◽  
Author(s):  
Shittu Akeem ◽  
Olatunbosun Lukman ◽  
Khalil Eltahir ◽  
Olalere Fatai ◽  
Babatunde Abiola ◽  
...  

BACKGROUND: Bone marrow is extremely vulnerable to damage caused by radiation therapy. Hence, bone marrow suppression is an important side effect of radiotherapy. Effective use of radiotherapy is therefore compromised by radiation-related injuries.MATERIAL AND METHODS: Six Guinea-pigs were recruited for the study of which three were subjected to total body irradiation with Co60 while the other three served as controls. Bone marrow and peripheral blood samples were collected before and at days 9, 14 and 21, post irradiation. Manual and automated counts were performed for bone marrow nucleated cells and peripheral blood cells respectively.RESULTS: Declining bone marrow cellularity was evident immediately post irradiation. Mean ± SD of marrow cell counted per mm3 were 121,924±281, 87,603±772, 121,367±375 and122,750±1000 pre-irradiation and days 9, 14 and 21, postirradiation (p-values 0.10, 0.27 and 0.29 respectively). Significant drops in counts were noticed on day 9 post-irradiation for all red cell parameters (p-values <0.05), for Total White Blood Cell Count and Neutrophil count (p-values <0.05) and also on days 14 and 21 for Lymphocytes (p-values <0.05) and on day 21 for Eosinophil/Basophil/Monocytes (p-value <0.05). A significant drop in platelets counts was also noticed on day 9 (p-value <0.05) which significantly increased above pre-irradiation value on day 21.CONCLUSION: Total body irrradiation with Co60 significantly affects the bone marrow with maximum reductions in marrow nucleated cells and peripheral blood cells counts on day 9 post irradiation. 


2021 ◽  
Author(s):  
Cong Wang ◽  
Xiaohang Qin ◽  
Guanzhong Gong ◽  
Lizhen Wang ◽  
Ya Su ◽  
...  

Abstract Objectives: To quantify the pelvic bone marrow (PBM) fat content changes receiving different radiation doses of concurrent chemoradiotherapy for cervical cancer and to determine association with peripheral blood cell counts. Methods: Fifty-four patients were prospectively collected. Patients underwent MRI iterative decomposition of water and fat with echo asymmetrical and least squares estimation (IDEAL IQ) scanning at RT-Pre, RT mid-point, RT end, and six months. The changes in proton density fat fraction (PDFF%) at 5–10 Gy, 10–15 Gy, 15–20 Gy, 20–30 Gy, 30–40 Gy, 40–50 Gy, and >50 Gy doses were analyzed. Spearman’s rank correlations were performed between peripheral blood cell counts versus the differences in PDFF% at different dose gradients before and after treatment. Results: The lymphocytes (ALC) nadirs appeared at the midpoint of radiotherapy, which was only 27.6% of RT-Pre; the white blood cells (WBC), neutrophils (ANC), and platelets (PLT) nadirs appeared at the end of radiotherapy which was 52.4%, 65.1%, and 69.3% of RT-Pre, respectively. At RT mid-point and RT-end, PDFF% increased by 46.8% and 58.5%, respectively. Six months after radiotherapy, PDFF% decreased by 4.71% under 5–30 Gy compared to RT-end; while it still increased by 55.95% compared to RT-Pre. There was a significant positive correlation between PDFF% and ANC nadirs at 5–10 Gy (r = 0.62, P = 0.006), and correlation was observed between PDFF% and ALC nadirs at 5–10 Gy (r = 0.554, P = 0.017). Conclusion: MRI IDEAL IQ imaging was a non-invasive approach to evaluate and track the changes of PBM fat content with concurrent chemoradiotherapy for cervical cancer. The limitation of low-dose bone marrow irradiation volume in cervical cancer concurrent chemoradiotherapy should be paid more attention.


Blood ◽  
1968 ◽  
Vol 32 (4) ◽  
pp. 662-667 ◽  
Author(s):  
R. STORB ◽  
R. B. EPSTEIN ◽  
E. D. THOMAS

Abstract Ten dogs were exposed to 1200 r. of whole body irradiation at a dose rate of 9.2 r./min. Five of these dogs were then given infusions of 21 to 74 x 109 autologous peripheral blood cells which had been previously stored at -80 C. 4.0 to 19.4 x 109 of these cells were lymphocytes, 0.4 to 4.9 x 109 were monocytes and 16.4 to 50.3 x 109 were granulocytes. All five dogs showed clinical or histologic evidence of bone marrow repopulation. The remaining 5 dogs were given 7 to 22 x 109 autologous thoracic duct lymphocytes. In none of these dogs was marrow repopulation observed. It was concluded that hemopoietic stem cells are not present in the thoracic duct lymph of the dog in any appreciable number.


Sign in / Sign up

Export Citation Format

Share Document