scholarly journals Immunologic and Cytogenetic Studies of Chronic Lymphocytic Leukemic Cells

Blood ◽  
1965 ◽  
Vol 26 (2) ◽  
pp. 121-132 ◽  
Author(s):  
JOOST J. OPPENHEIM ◽  
JACQUELINE WHANG ◽  
EMIL FREI

Abstract The lymphocyte transformation response of 17 chronic lymphocytic leukemia patients when tested in the short-term tissue culture with PHA-M, and PPD was found to be significantly decreased when compared to normal subjects. Serum factors were not found to be responsible for this cellular hyporesponsiveness. The proportions of immunoresponsive lymphocytes found in the patients’ peripheral circulation decreased as their white blood cell count increased. The transformation response to PHA-M was generally better than to PPD. Neither the PPD negative patients nor the normal PPD negative subjects’ cells responded to PPD stimulation in vitro. Monocytes usually would phagocytize particles added to the cultures and could thus be distinguished from the nonphagocytic proliferating lymphocytes which were the only cells that incorporated thymidine H3. Radioautographs of tritiated thymidine also revealed the rate of PPD lymphocyte transformation to be slower than with PHA-M. There were no significant differences in the proportions or the degree of leukemic and normal transformed lymphocyte labeling with tritiated thymidine. Cytogenetic studies revealed that the patients’ mitotic indices both in vivo and in vitro were markedly depressed. The modal chromosome number was 46 in each patient, and no cytogenetic abnormalities other than those due to exposure to radiation were found.

1965 ◽  
Vol 122 (4) ◽  
pp. 651-664 ◽  
Author(s):  
Joost J. Oppenheim ◽  
Jacqueline Whang ◽  
Emil Frei

The lymphocyte proliferation in repeatedly studied mixed leukocyte cultures of peripheral white blood cells from a skin graft donor and 2 recipients was significantly increased at the time of graft rejection. This was determined from the increased proportions of mononuclear cells labeling with tritiated thymidine, increased mitotic indices, and the appearance of increased numbers of transformed lymphocytes after rejection of 1st and 2nd skin grafts. The temporarily enhanced response occurred sooner and was of shorter duration after the second than after the first graft, but was quantitatively similar each time. The cell proliferation in the mixed leukocyte cultures of the two recipients was similarly affected by the homograft rejections. The cultures containing three cell populations usually manifested a greater lymphocyte response than corresponding cultures of leukocytes from only two unrelated subjects. An increase in the ratio of female recipient to male graft donor metaphases in the cultures at the time of enhanced lymphocyte transformation indicated that proliferation of the graft recipient lymphocytes was responsible for the above findings. Unmixed, unstimulated control cultures grown in autologous, the other subjects plasma, or heterologous calf serum failed to support significant lymphocyte transformation. The role of humoral factors and relationship of the in vitro cellular responses to the in vivo homograft reaction are discussed.


Blood ◽  
1984 ◽  
Vol 63 (2) ◽  
pp. 463-467 ◽  
Author(s):  
F Praz ◽  
G Karsenty ◽  
JL Binet ◽  
P Lesavre

Abstract Using affinity-purified 125I-F(ab')2 anti-human C3, we have investigated the ability of various leukemic cells to activate complement. Lymphocytes from patients with chronic lymphocytic leukemia (CLL) activated the alternative pathway, but cells from patients with other forms of leukemia or normal lymphocytes did not do so. The amount of C3 deposited on the CLL cells was significantly higher in patients with organomegaly (i.e., splenomegaly and/or hepatomegaly). Activation of complement by CLL cells as assessed by C3 deposition on the membrane occurred both in vivo and in vitro and was not related to the N- acetylneuraminic acid content of the membrane.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1799-1799
Author(s):  
Maria Göbel ◽  
Michael Möllmann ◽  
Andre Görgens ◽  
Ulrich Dührsen ◽  
Andreas Hüttmann ◽  
...  

Abstract Abstract 1799 The receptor tyrosine kinase Axl belongs to the TAM (Tyro-3, Axl and Mer) family and is involved in the progression of several human malignancies including chronic lymphocytic leukemia (CLL), where it is has been found to be overexpressed in comparison to normal B-cells. An increasing body of evidence suggests that Axl acts as an oncogene which increases the survival, proliferation, metastatic potential and chemotherapy resistance of tumor cells. Hence, it has been recently identified as a potential therapeutic target in a wide range of tumor entities with deregulated Axl expression including prostate cancer, glioma, lung cancer and CLL. Here, we investigated two different Axl inhibitors for their potential to inhibit the migratory capacity and survival of leukemic cells in preclinical CLL models. In vitro studies: Freshly isolated PBMC (>90% CD5+CD19+) from CLL patients were incubated in serum free medium for 48h containing concentrations series of 2 different Axl inhibitors: BMS777607, a previously published inhibitor of the MET kinase family, and LDC2636, a novel inhibitor of the TAM receptor tyrosine kinase (RTK) family with high affinity to Axl. Viability of CLL cells was assessed by trypan blue staining and flow cytometry employing annexin V staining. Since a polarized phenotype is required for migration, cell polarization was analyzed by time-lapse video-microscopy. We detected cytotoxic effects in a patient dependent manner that were more prevalent in LDC2636 as compared to BMS777607 treated cells (LD50= 1.4 μM vs. 5.2 μM, p<0.004, n=5). Cell polarization of the remaining viable cells was significantly reduced in a dose dependent fashion in comparison to vehicle only controls (LDC2636 IC50 = 7.2 μM, p<0.00001; BMS777607: IC50=6.2μM; p=0.0004). Of note, both Axl inhibitors exhibited significantly weaker effects on both, the viability and cell polarization of normal PBMC over the whole concentration range tested (p<0.05, n=5). In vivo studies: To verify our hypothesis that reduced cell polarization results in decreased homing of leukemic cells in vivo we employed a recently developed adoptive transfer model of CLL. In this model NOD/SCID/gcnull(NSG) mice were pre-treated with a single intraperitoneal bolus of LDC2636 or BMS777607 (20 mg/kg) and subsequently transplanted with primary CLL cells. Both Axl inhibitors significantly reduced the homing capacity of CLL cells to the bone marrow of NSG mice by 43% and 59%, respectively, compared to vehicle treated controls (LDC2636: p=0.046, BMS777607 p=0.0077; n=3). These data demonstrate that Axl inhibitors exert potent in vitro and in vivo activity against human CLL cells, which is caused at least in part by the suppression of CLL homing to their supportive stromal niches. Disclosures: No relevant conflicts of interest to declare.


1978 ◽  
Vol 148 (6) ◽  
pp. 1570-1578 ◽  
Author(s):  
S M Fu ◽  
N Chiorazzi ◽  
H G Kunkel ◽  
J P Halper ◽  
S R Harris

Successful induction of in vitro differentiation and immunoglobulin synthesis of the leukemic lymphocytes was carried out in two cases of chronic lymphocytic leukemia. Few plasma cells and little specific Ig secretion were detected in the cultures of isolated leukemic B cells in either the presence or the absence of autologous T cells. Up to 30% of the leukemic B cells matured to plasma cells, and a 32-fold increase in specific Ig synthesis was observed when T cells from normal individuals were added to the cultures of these leukemic B cells. In one of the two cases, autologous T cells were able to induce greater than 50% of the leukemic B cells to differentiate further to plasma cells in the presence of pokeweed mitogen. This markedly accelerated in vitro differentiation was only achieved with leukemic cells from cases in which there was evidence of slight differentiation in vivo. No evidence could be obtained for excessive suppressor T cells in these patients. However, a T-cell defect in the generation of allogeneic effect helper factors was identified. This defect may be responsible for the reduced rate of leukemic maturation in vivo.


2021 ◽  
Vol 5 (14) ◽  
pp. 2817-2828
Author(s):  
Matteo Grioni ◽  
Arianna Brevi ◽  
Elena Cattaneo ◽  
Alessandra Rovida ◽  
Jessica Bordini ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is caused by the progressive accumulation of mature CD5+ B cells in secondary lymphoid organs. In vitro data suggest that CD4+ T lymphocytes also sustain survival and proliferation of CLL clones through CD40L/CD40 interactions. In vivo data in animal models are conflicting. To clarify this clinically relevant biological issue, we generated genetically modified Eμ-TCL1 mice lacking CD4+ T cells (TCL1+/+AB0), CD40 (TCL1+/+CD40−/−), or CD8+ T cells (TCL1+/+TAP−/−), and we monitored the appearance and progression of a disease that mimics aggressive human CLL by flow cytometry and immunohistochemical analyses. Findings were confirmed by adoptive transfer of leukemic cells into mice lacking CD4+ T cells or CD40L or mice treated with antibodies depleting CD4 T cells or blocking CD40L/CD40 interactions. CLL clones did not proliferate in mice lacking or depleted of CD4+ T cells, thus confirming that CD4+ T cells are essential for CLL development. By contrast, CD8+ T cells exerted an antitumor activity, as indicated by the accelerated disease progression in TCL1+/+TAP−/− mice. Antigen specificity of CD4+ T cells was marginal for CLL development, because CLL clones efficiently proliferated in transgenic mice whose CD4 T cells had a T-cell receptor with CLL-unrelated specificities. Leukemic clones also proliferated when transferred into wild-type mice treated with monoclonal antibodies blocking CD40 or into CD40L−/− mice, and TCL1+/+CD40−/− mice developed frank CLL. Our data demonstrate that CD8+ T cells restrain CLL progression, whereas CD4+ T cells support the growth of leukemic clones in TCL1 mice through CD40-independent and apparently noncognate mechanisms.


1974 ◽  
Vol 140 (4) ◽  
pp. 977-994 ◽  
Author(s):  
Peter Lonai ◽  
Hugh O. McDevitt

In vitro antigen-induced tritiated thymidine uptake has been used to study the response of sensitized lymphocytes to (T,G)-A--L, (H,G)-A--L, and (Phe,G)-A--L in responder and nonresponder strains of mice. The reaction is T-cell and macrophage dependent. Highly purified T cells (91% Thy 1.2 positive) are also responsive, suggesting that this in vitro lymphocyte transformation system is not B-cell dependent. Lymphocytes from high and low responder mice stimulated in vitro react as responders and nonresponders in a pattern identical to that seen with in vivo immunization. Stimulation occurs only if soluble antigen is added at physiological temperatures; antigen exposure at 4°C followed by washing and incubation at 37°C fails to induce lymphocyte transformation. Stimulation is specific for the immunizing antigen and does not exhibit the serologic cross-reactivity which is characteristic of these three antigens and their respective antisera. The reaction can be inhibited by anti-H-2 sera but not by anti-immunoglobulin sera. The anti-immunoglobulin sera did, however, inhibit lipopolysaccharide or pokeweed mitogen stimulation. These results suggest that the Ir-1A gene(s) are expressed in T cells, and that there are fundamental physiologic differences between T- and B-cell antigen recognition.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1760
Author(s):  
Ekaterina Guzev ◽  
Galia Luboshits ◽  
Svetlana Bunimovich-Mendrazitsky ◽  
Michael A. Firer

Chlorambucil (Chl), Melphalan (Mel), and Cytarabine (Cyt) are recognized drugs used in the chemotherapy of patients with advanced Chronic Lymphocytic Leukemia (CLL). The optimal treatment schedule and timing of Chl, Mel, and Cyt administration remains unknown and has traditionally been decided empirically and independently of preclinical in vitro efficacy studies. As a first step toward mathematical prediction of in vivo drug efficacy from in vitro cytotoxicity studies, we used murine A20 leukemic cells as a test case of CLL. We first found that logistic growth best described the proliferation of the cells in vitro. Then, we tested in vitro the cytotoxic efficacy of Chl, Mel, and Cyt against A20 cells. On the basis of these experimental data, we found the parameters for cancer cell death rates that were dependent on the concentration of the respective drugs and developed a mathematical model involving nonlinear ordinary differential equations. For the proposed mathematical model, three equilibrium states were analyzed using the general method of Lyapunov, with only one equilibrium being stable. We obtained a very good symmetry between the experimental results and numerical simulations of the model. Our novel model can be used as a general tool to study the cytotoxic activity of various drugs with different doses and modes of action by appropriate adjustment of the values for the selected parameters.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2414-2414
Author(s):  
Wei Ding ◽  
Traci Sassoon ◽  
Justin Boysen ◽  
Neil E. Kay

Abstract Abstract 2414 Background: Mesenchymal stromal cells (MSC) derived from normal subjects are known to have immunosuppressive capacity by virtue of inhibiting T- and B-cell activation. A novel subset of T cells, Th17, plays an important role in inflammation and autoimmunity. A recent report demonstrated that normal MSC ameliorates experimental autoimmune encephalomyelitis by inhibiting CD4+ Th17 cells in a chemokine ligand 2-dependent manner (J Immunol. 2009, 182: 5994). It remains unknown if MSC derived from leukemic or cancer patients play a role in Th17 cell differentiation. In particular this would be of interest to study in B-Chronic Lymphocytic Leukemia (CLL) where immunosuppression is evident even in early stage disease. Methods: MSC derived from bone marrow of CLL patients or normal subjects were expanded in vitro as previously described by us (Br J Haematol. 2009, 147:471). CD4+ cells positively selected from normal peripheral blood mononuclear cells were co-cultured with either CLL MSC or normal MSC at a ratio of 50:1 for 3 days with stimulation via CD3/CD28 beads, as well as interleukin-1β (IL-1β; 50 ng/ml). Then phorbol 12-myristate 13-acetate (50 ng/ml) and ionomycin (500 ng/ml) were introduced into the co-culture for 5 hrs in the presence of brefeldin A. Subsequently, cells were stained with CD4-phycoerythrin (PE) and IL-17-Alexa647 using intracellular flow to analyze the percent expression of IL-17 in CD4 + cells. Cytokine production from both CLL MSC and normal MSC as secreted into culture medium (CM) were tested using a commercial multiplex cytokine array (Invitrogen, CA). This array measures the level of 30 different cytokines. Results: Positively selected CD4+ cells from peripheral blood of normal donors contain minimal percentages of Th17 cells (range: 0.48–0.71%). IL-1β stimulation induced increased IL-17 expression (range: 1.05–1.12%). Co-culture of CLL MSC with CD4+ cells induced significantly increased IL-17 expression in the CD4+ T cells (range: 1.16–1.32%). The promoting effect of CLL MSC on these Th17 cells appeared to be mediated by direct contact since the CM of CLL MSC was not able to induce increased IL-17 expression (mean = 0.66%) to a similar level as direct co-culture. When IL-1b was used to stimulate Th17 cell differentiation from CD4+ cells, CLL MSC were able to further promote the level of Th17 cell differentiation (range: 2.01–2.63%), indicating synergistic function for CLL MSC with IL-1β. This latter finding again appeared to be more pronounced for CLL MSC as normal MSC with IL-1β was not able to promote Th17 cell differentiation to a similar degree. To further investigate the mechanism of CLL MSC on Th17 cell differentiation, we assessed the cytokine production for resting CLL MSC and normal MSC compared to cytokine production of CLL and normal MSC stimulated with IL-17. The data from multiplex cytokine arrays revealed that the cytokine profiles were not different between resting CLL and normal MSC; however, when MSC were stimulated with IL-17, there were significant differences between CLL and normal MSC in terms of IL-6 and MCP-1 production (IL-6, CLL vs. normal, 957.9 ± 98 vs. 554.2 ± 92.3 pg/ml, p = 0.01; MCP-1, CLL vs. normal, 787.7 ± 166.9 vs. 330.2 ± 116.5 pg/ml, p = 0.04, n = 7). Since both IL-6 and MCP-1 have been demonstrated to play important roles in Th17 differentiation, we are conducting further studies to dissect the mechanism of CLL MSC in the promotion of Th17 cell differentiation. Conclusions: These results indicate that MSC derived from CLL patients promotes Th17 cell differentiation in vitro, which is in contrast to the previous published suppressive role of normal MSC on Th17 cell differentiation. Recent findings have indeed demonstrated that CLL patients do have high percentage of Th17 cells (Cancer Res. 2009. 69: 5922) when compared to other lymphoproliferative diseases. Given this data we believe that CLL MSC are intrinsically different from normal MSC in terms of immune regulation and cytokine production. This may occur as a result of the bi-directional activation that we found to be present between MSC and CLL leukemic cells (Br. J Haematol. 2009. 147:471). In total, our findings demonstrated that the dynamic interactions between the CLL leukemic cells and MSC appear to influence the Th 17 cell levels. This is of biological and clinical interest in that Th17 cells have the potential to regulate the immune environment to favor tumor proliferation and progression. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2892-2892
Author(s):  
Ju-Yoon Yoon ◽  
David Szwajcer ◽  
Ganchimeg Ishdorj ◽  
Pat Benjaminson ◽  
James B Johnston ◽  
...  

Abstract Abstract 2892 Chronic Lymphocytic Leukemia (CLL) is the most common haematological malignancy in the western world. Fludarabine, a nucleoside analogue, is commonly used to treat Chronic Lymphocytic Leukemia (CLL) in untreated and relapsed CLL. However, patients commonly develop resistance to fludarabine. We hypothesize that the addition of Valproic Acid (VPA), an inhibitor of histone deacetylases (HDACs), can improve fludarabine-based therapy. The VPA-Fludarabine combination induced a synergistic response in human leukemic cells and primary CLL cells. Fludarabine also interacted synergistically with three other HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA), Trichostatin A, and sodium butyrate, while the synergy was not observed with valpromide, the VPA analogue that does not inhibit HDACs. We confirmed that fludarabine treatment activates caspases-8, -9 and caspase-3, and we also show that fludarabine treatment activates caspase-2, an upstream caspase that has been implicated in cell death associated with lysosome membrane permeabilization (LMP). Activation of all four caspases was enhanced by the addition of VPA. Enhanced activation of caspases was associated with down-regulation of two prominent anti-apoptotic proteins, Mcl-1 and XIAP. The down-regulation of Mcl-1 and XIAP was dependent on the lysosomes, as their alkalinization using either chloroquine or NH4Cl partially stabilized both proteins, leading to reduced apoptosis. Chemical inhibition of a specific lysosomal protease, cathepsin B, using CA074-Me, was sufficient to stabilize Mcl-1 and XIAP, reduce caspase activation and apoptosis. Treatment with fludarabine or the VPA-fludarabine combination led to the loss of lysosome integrity, as visualized by fluorescent staining, thus suggesting a leakage of the lysosomal content into the cytosol in response to the drugs. Addition of purified cathepsin B to leukemic cell lysates led to the reduction in protein levels of Mcl-1, XIAP and pro-caspase-2, thus suggesting that the re-localization of cathepsin B into the cytosol is sufficient to drive cell death. VPA treatment enhanced cathepsin B levels in both leukemic cell lines and primary CLL cells. When cathepsin B activity was examined using zRR-AMC, a fluorogenic substrate of cathepsin B, VPA also increased cathepsin B activity, and this activity was abolished by the addition of CA074-Me. In parallel with the in vitro/ex vivo experiments, we had launched a phase II clinical trial at CancerCare Manitoba. Six relapsed CLL patients who had received at least one prior therapy with fludarabine were examined. No responses were seen after 28 days using VPA alone, in line with the in vitro observation of minimal cytotoxicity of VPA at low doses. However, in five patients who continued on VPA with fludarabine, three patients showed a >50% fall in lymphocyte/lymph node size after receiving five cycles of the combination. When the leukemic cells from VPA-treated CLL patients were examined, VPA administration induced increased levels of histone-3 acetylation and cathepsin B in vivo. In summary, a novel mechanism for fludarabine cytotoxicity has been elucidated, where fludarabine induces a loss of lysosomal integrity, leading to cathepsin B-dependent cell death. VPA interacted with fludarabine synergistically, and this synergy was associated with the VPA-induced increase in VPA level and activity. VPA induced increase in histone-3 acetylation and cathepsin B in vivo, and this induction of cathepsin B is likely to be contributing to the clinical response observed in fludarabine-relapsed/refractory CLL patients. Disclosures: Off Label Use: Valproic acid as adjunct therapy in Chronic Lymphocytic Leukemia. Johnston:Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2879-2879
Author(s):  
Maria Göbel ◽  
Michael Möllmann ◽  
André Görgens ◽  
Ulrich Dührsen ◽  
Joachim Rudolf Göthert ◽  
...  

Abstract The receptor tyrosine kinase Axl belongs to the TAM (Tyro-3, Axl and Mer) family and is involved in the progression of several human malignancies including chronic lymphocytic leukemia (CLL), where it is has been found to be overexpressed in comparison to normal B-cells. An increasing body of evidence suggests that Axl acts as an oncogene which increases the survival, proliferation, metastatic potential and chemotherapy resistance of tumor cells. Hence, it has been recently identified as a potential therapeutic target in a wide range of tumor entities with deregulated Axl expression including prostate cancer, glioma, lung cancer and CLL. Here, we investigated two different Axl inhibitors for their ability to inhibit the migratory capacity and survival of leukemic cells in preclinical CLL models. In vitro studies: We measured soluble Axl plasma concentrations by enzyme-linked immunosorbent assay (ELISA) in 71 CLL patients and 24 healthy donors. Soluble Axl levels were not significantly higher in CLL patients compared to healthy donors (p=0. 11). However, in CLL patients high sAxl plasma concentrations were differentially expressed with some patients exhibiting normal and others elevated plasma concentrations. The latter showed an association with shorter time to first treatment (p=0.0005) and several poor prognostic markers (e.g. CD38, FISH cytogentics, Binet stage). Freshly isolated PBMC (>90% CD5+CD19+) from CLL patients were incubated in serum free medium for 48h containing concentrations series of 2 different Axl inhibitors: BMS777607, a previously published inhibitor of the MET kinase family, and LDC2636, a novel inhibitor of the TAM receptor tyrosine kinase (RTK) family with high affinity to Axl. Viability of CLL cells was assessed by trypan blue staining and flow cytometry employing annexin V staining. Cellular polarization was analyzed by time-lapse microscopy. We detected cytotoxic effects in a patient-dependent manner that were more prevalent in LDC2636 as compared to BMS777607 treated cells (IC50= 0.21 µM vs. 2.88 µM, p<0.05, n=5). The cellular polarization of the remaining viable cells was significantly reduced in a dose dependent fashion in comparison to vehicle only controls (LDC2636 IC50 = 7.2 µM, p<0.00001; BMS777607: IC50=6.2µM; p=0.0004). Of note, both Axl inhibitors exhibited significantly weaker effects on both, the viability and polarization of normal PBMC over the whole concentration range tested (p<0.05, n=5). In vivo studies To verify our hypothesis that reduced cell polarization results in decreased homing of leukemic cells in vivo we employed a recently developed adoptive transfer model of CLL. In this model NOD/SCID/IL2Rgcnull(NSG) mice were pre-treated with a single intraperitoneal (i.p.) bolus of LDC2636 or BMS777607 (20 mg/kg) and subsequently transplanted with primary CLL cells. Both Axl inhibitors significantly reduced the homing capacity of CLL cells to the BM of NSG mice by 46% and 59%, respectively, compared to vehicle treated controls (LDC2636: p=0.0063, BMS777607 p=0.0007; n=4). To evaluate if LDC2636 also exhibits effects in a disease-relevant CLL model, we applied a MEC-1 xenograft model which causes a lethal leukemia in NSG mice. We pretreated the mice with 40mg/kg Axl inhibitor or vehicle-only control i.p. and subsequently transplanted the CLL cell line MEC-1 intravenously. The following four days the mice were injected again with 40mg/kg LDC2636 or vehicle-only i.p. We evaluated the survival time and found that mice treated with LDC2636 lived significantly longer than vehicle-only controls (24 vs. 18 days median survival, p=0.0016, n=15). Mice that received only LDC2636 and no Mec-1 cells did not show any effect. These data demonstrate that Axl inhibitors exert potent in vitro and in vivo activity against human CLL cells, which is caused at least in part by the suppression of CLL homing to their supportive stromal niches. Disclosures: Schultz-Fademrecht: Lead Discovery Center GmbH: Employment. Unger:Lead Discovery Center GmbH: Employment. Klebl:Lead Discovery Center GmbH: Employment. Choidas:Lead Discovery Center GmbH: Employment.


Sign in / Sign up

Export Citation Format

Share Document