scholarly journals Hemoglobin Function in the Horse: The Role of 2,3-Diphosphoglycerate in Modifying the Oxygen Affinity of Maternal and Fetal Blood

Blood ◽  
1973 ◽  
Vol 42 (3) ◽  
pp. 471-479 ◽  
Author(s):  
H. Franklin Bunn ◽  
Hyram Kitchen

Abstract The blood of the newborn horse was found to have a higher affinity for oxygen than that of the mother. This difference was due to the fact that the red cells of newborn foals contained 36% lower 2,3-diphosphoglycerate (2,3-DPG) than red cells from their respective mares. The ATP levels of foal and maternal red cells did not differ significantly. Following birth a prompt rise in the foal's red cell 2,3-DPG occurred, approaching normal (maternal) levels within 5 days. Unlike many other species, the hemoglobins of the newborn and adult horse have been shown to be structurally identical. Furthermore, phosphate-free solutions of newborn and maternal hemoglobins had identical oxygen saturation curves in the absence and presence of added 2,3-DPG. This study demonstrates that, in contrast to other species. the increased oxygen affinity of horse fetal red cells is due to a lower level of the cofactor 2,3-DPG rather than to the presence of fetal hemoglobin.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4010-4010
Author(s):  
Charles Kung ◽  
Collin Hill ◽  
Yue Chen ◽  
Abhishek Jha ◽  
Penelope Kosinski ◽  
...  

Abstract Pyruvate kinase deficiency (PKD) is an autosomal recessive enzymopathy that is the most common cause of hereditary nonspherocytic hemolytic anemia (HNSHA). PKD is a rare disease characterized by a life-long chronic hemolysis with severe co-morbidities. It is hypothesized that insufficient energy production to maintain red cell membrane homeostasis promotes the chronic hemolysis. Treatment is generally palliative, focusing on the resultant anemia, and there are no approved drugs that directly target mutated pyruvate kinase. AG-348 is an allosteric activator of the red cell isoform of pyruvate kinase (PKR) that has recently entered Phase I clinical trials in normal healthy volunteers. AG-348 increases the catalytic efficiency and enhances the protein stability of a spectrum of recombinantly expressed PKR mutant proteins that have been associated with PKD. PKD red cells are characterized by changes in metabolism associated with defective glycolysis, including a build-up of the upstream glycolytic intermediate 2,3-DPG and deficiency in the PKR product adenosine triphosphate (ATP). PKR flux, e.g. the rate of carbon flow through the PKR enzyme reaction, was examined in PKD patient or wild type (WT) donor blood samples by incubation of whole blood with a stable isotope tracer, [U-13C6]-glucose. At various time points after the addition of [U-13C6]-glucose, metabolism was quenched and metabolites were extracted. Metabolite pool sizes and 13C label incorporation into glycolytic intermediates were monitored by LC/MS. The rate of label incorporation was found to be significantly slower in PKD patient red cells, consistent with decreased glycolytic activity. Treatment of PKD red cells with AG-348 ex-vivo induces changes in metabolism consistent with increased glycolytic activity including reduced 2,3-DPG levels, increased ATP levels, and increased PKR enzyme activity levels. The effect of AG-348 on red cell metabolism in vivo was evaluated in mice. C57/BL6 mice were dosed by oral gavage either with a single dose, or with multiple doses (BID) of AG-348 for 7 days. Dose levels tested were 1 mpk, 10 mpk, 50 mpk, and 150 mpk. Following the last dose, mice were bled to evaluate drug exposure and pharmacodynamic markers including 2,3-DPG and ATP levels, and PKR activity. AG-348 was demonstrated to be a well-behaved compound, with dose-proportional increase in exposure, both in the single-dose and multiple dose studies. A single dose of AG-348 resulted in a dose-dependent increase in PKR activity levels, concomitant with reduction in 2,3-DPG levels. There were no significant changes in ATP levels after a single administration of AG-348. In the multiple-dose studies, similar changes in PKR activity and 2,3-DPG levels were observed. In contrast to the single-dose study, ATP levels were observed to be robustly increased in a dose-dependent manner. The effect of AG-348 on PKR flux was assessed in whole blood from mice treated with AG-348. C57BL/6 mice were dosed by oral gavage with AG-348 (150 mg/kg twice daily [BID]) for 3 days. Whole blood was incubated with [U-13C6]-glucose and the metabolite pool sizes and rate of 13C label incorporation into glycolytic intermediates were assessed. The data were subsequently analyzed using a mathematical model to quantify flux through the PKR reaction and it was determined that AG-348 treatment significantly increased flux through the PKR reaction. Collectively, these data demonstrate that AG-348 not only potently binds to and activates the PKR enzyme in vivo, but this enzyme activation induces enhanced glycolytic pathway activity in red cells that results in profound changes in cellular metabolism, as reflected in dramatically increased ATP levels and reduced 2,3-DPG levels. As AG-348 has similar potency against the WT PKR enzyme as against tested mutant PKR enzymes in vitro, these data support the hypothesis that AG-348 treatment may similarly enhance glycolytic activity in PKD patients and thus correct the underlying pathology of PKD. Figure 1 Figure 1. Disclosures Kung: Agios Pharmaceuticals: Employment, Stockholder Other. Hill:Agios Pharmaceuticals: Employment, Stockholder Other. Chen:Agios Pharmaceuticals: Employment, Stockholder Other. Jha:Agios Pharmaceuticals: Employment, Stockholder Other. Kosinski:Agios Pharmaceuticals: Employment, Stockholder Other. Clasquin:Agios Pharmaceuticals: Employment, Stockholder Other. Si:Agios Pharmaceuticals: Employment, Stockholder Other. Kim:Agios Pharmaceuticals: Employment, Stockholder Other. Hixon:Agios Pharmaceuticals: Employment, Stockholder Other. Dang:A: Employment, Stockholder Other. Agresta:Agios Pharmaceuticals: Employment, Stockholder Other. Silverman:Agios Pharmaceuticals: Employment, Stockholder Other. Yang:Agios Pharmaceuticals: Employment, Stockholder Other.


Blood ◽  
1981 ◽  
Vol 58 (2) ◽  
pp. 189-197 ◽  
Author(s):  
HF Bunn

Throughout their evolution, mammalian hemoglobins have acquired a broad repertoire of functional properties well suited to the internal milieu of the red cell. Mammals display a wide range in whole blood oxygen affinity dependent on three major factors: the intrinsic oxygen affinity of the hemoglobin, the level of red cell 2,3-DPG, and the response of the hemoglobin to 2,3-DPG. The concentration of 2,3-DPG varies among groups of mammals. Those animals (cats and ruminants) that have very low levels of this intracellular mediator have hemoglobins of intrinsically low oxygen affinity that fail to respond to the addition of 2,3-DPG. Mammals that have adapted to various types of hypoxia tend to have increased oxygen affinity, primarily mediated through reduced levels of red cell 2,3-DPG. In contrast, mammals who are experimentally subjected to low oxygen tensions develop decreased oxygen affinity owing to increased red cell 2,3-DPG. Mammals employ one of three different mechanisms for the maintenance of higher oxygen affinity of fetal red cells, compared to maternal red cells. Many of these phenomena can be satisfactorily explained at the molecular level but their adaptational significance is less clear.


Blood ◽  
1981 ◽  
Vol 58 (2) ◽  
pp. 189-197 ◽  
Author(s):  
HF Bunn

Abstract Throughout their evolution, mammalian hemoglobins have acquired a broad repertoire of functional properties well suited to the internal milieu of the red cell. Mammals display a wide range in whole blood oxygen affinity dependent on three major factors: the intrinsic oxygen affinity of the hemoglobin, the level of red cell 2,3-DPG, and the response of the hemoglobin to 2,3-DPG. The concentration of 2,3-DPG varies among groups of mammals. Those animals (cats and ruminants) that have very low levels of this intracellular mediator have hemoglobins of intrinsically low oxygen affinity that fail to respond to the addition of 2,3-DPG. Mammals that have adapted to various types of hypoxia tend to have increased oxygen affinity, primarily mediated through reduced levels of red cell 2,3-DPG. In contrast, mammals who are experimentally subjected to low oxygen tensions develop decreased oxygen affinity owing to increased red cell 2,3-DPG. Mammals employ one of three different mechanisms for the maintenance of higher oxygen affinity of fetal red cells, compared to maternal red cells. Many of these phenomena can be satisfactorily explained at the molecular level but their adaptational significance is less clear.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 10-10
Author(s):  
Julia Z. Xu ◽  
Anna Conrey ◽  
Ingrid Frey ◽  
Eveline Gwaabe ◽  
Laurel A Menapace ◽  
...  

Abstract Background. Hemoglobin S (HbS) polymerization causes red cell sickling, hemolysis, and vaso-occlusion, key pathological features of sickle cell disease (SCD). Mitapivat (AG-348) has potential as an oral anti-sickling agent in SCD via increasing glycolytic activity, which reduces intracellular levels of 2,3-diphosphoglycerate (2,3-DPG) in parallel with increasing adenosine triphosphate (ATP). Reducing 2,3-DPG decreases HbS polymerization, while increasing ATP improves red cell membrane integrity. Here, we report the complete results of our single-center Phase 1 study of multiple ascending doses of mitapivat in subjects with SCD. Methods. We enrolled adult subjects (age ≥ 18 years) with confirmed SCD (HbSS) and baseline Hb ≥ 7 g/dL; with no recent transfusions, erythropoietin therapy, or changes in SCD-specific therapies including hydroxyurea (HU) and L-glutamine. Subjects received either 3 or 4 ascending dose levels of mitapivat (5 mg BID, 20 mg BID, 50 mg BID, 100 mg BID) for 2 weeks' duration each, followed by a 12-15 day drug taper. Safety and tolerability were assessed by frequency and severity of adverse events (AEs) and changes in hemoglobin (Hb) level and hemolytic markers. For each dose level, pharmacokinetics (PK), pharmacodynamics (PD; 2,3-DPG and ATP levels), and markers of oxygen (O 2) affinity (p50) and HbS polymerization (t50) were assessed pre-dose, post-dose, at end of taper, and at end of study. p50 is the partial pressure of O 2 at which 50% of the hemes in the Hb molecule have O 2 bound; t50 is the time at which 50% of erythrocytes are sickled in response to gradual deoxygenation with nitrogen to a final O 2 partial pressure of 38 torr. Results. Out of 17 subjects enrolled, 16 escalated to 50 mg BID. One subject, withdrawn 3 days after starting the study for a pre-existing pulmonary embolus, was not evaluable for response. After a protocol amendment, 9/10 eligible subjects completed the 100 mg BID dose level; 1 subject self-discontinued treatment after completing 3 dose levels. Mean age of the 17 subjects was 39 years (range 23-55 years); 11 were male, and 12 were on HU. Mitapivat was well tolerated; the most commonly reported drug-related AEs were insomnia (n=6 subjects, Grades 1-2), arthralgia (n=3, Grades 1-2), and hypertension (n=3, Grades 1-3). Six serious AEs (SAEs) were reported in 6/17 subjects, including 4 vaso-occlusive crises (VOCs), 1 non-VOC-related pain, and 1 pre-existing pulmonary embolism; 2/6 SAEs were deemed possibly drug-related. Of the 4 VOCs, 2 occurred during drug taper and were possibly drug-related, and 2 occurred during the 28-day safety follow up post-treatment in the setting of known VOC triggers. In 16 evaluable subjects, a dose-dependent decrease in mean 2,3-DPG levels and increase in mean ATP levels were consistently observed, followed by a return to near baseline by end of study (Figure 1A-B). There was a mean decrease in p50 and increase in t50 (Figure 1D-E), indicating increased oxygen affinity and slower sickling, respectively. The mean Hb increase at the 50 mg BID dose level was 1.2 g/dL (range -0.3-2.9 g/dL; Figure 1C). Over half (9/16, 56.3%) of subjects achieved a Hb response, defined as a ≥ 1 g/dL increase in Hb at any dose level compared to baseline. Subjects also experienced a mean reduction in the hemolytic markers of lactate dehydrogenase, total serum bilirubin, absolute reticulocyte count, and aspartate aminotransferase during the dose escalation period (Figure 1F-I), though responses were variable. Mean corpuscular volume (MCV) and HbF levels remained relatively stable throughout the study, supporting the notion that hydroxyurea exposure remained stable throughout the treatment period. Conclusion. During a 6-8 week treatment period, mitapivat demonstrated an acceptable safety and tolerability profile at multiple ascending dose levels in subjects with SCD. Mitapivat improved anemia, reduced markers of hemolysis, decreased 2,3-DPG and increased ATP levels, improved oxygen affinity, and decreased sickling rate, signaling its potential to improve clinically meaningful outcomes in SCD. Long-term disease modifying effects of mitapivat treatment in SCD are being evaluated in an ongoing extension study (ClinicalTrials.gov NCT04610866). Figure 1 Figure 1. Disclosures Iyer: Novartis: Current equity holder in publicly-traded company; Agios Pharmaceuticals: Current Employment, Current holder of stock options in a privately-held company. Mangus: Agios Pharmaceuticals, Inc.: Current Employment, Current equity holder in publicly-traded company; Bristol-Myers Squibb: Current equity holder in publicly-traded company. Kung: Agios Pharmaceuticals, Inc.: Current Employment, Current holder of stock options in a privately-held company. Dang: Agios Pharmaceuticals, Inc.: Current Employment, Current holder of stock options in a privately-held company. Kosinski: Agios Pharmaceuticals: Current Employment, Current equity holder in publicly-traded company. Hawkins: Bristol-Myers Squibb: Current equity holder in publicly-traded company; Agios: Current equity holder in publicly-traded company.


1978 ◽  
Vol 45 (1) ◽  
pp. 7-10 ◽  
Author(s):  
H. Bard ◽  
J. C. Fouron ◽  
J. E. Robillard ◽  
A. Cornet ◽  
M. A. Soukini

Studies were carried out during fetal life in sheep to determine the relationship of 2,3-diphosphoglycerate (DPG), the intracellular red cell and extracellular pH, and the switchover to adult hemoglobin synthesis in regulating the position of the fetal red cell oxygen-affinity curve in utero. Adult hemoglobin first appeared near 120 days of gestation. The mean oxygen tension at which hemoglobin is half saturated (P50) prior to 120 days of gestation remained constant at 13.9 +/- 0.3 (SD) Torr and then increased gradually as gestation continued, reaching 19 Torr at term. During the interval of fetal life studied, the level of DPG was 4.43 +/- 1.63 (SD) micromol/g Hb and the deltapH between plasma and red blood cells was 0.227 +/- 0.038 (SD); neither was affected by gestational age. The decrease in the red cell oxygen affinity after 120 days of gestation ocrrelated with the amount of adult hemoglobin present in the fetus (r = 0.78; P less than 0.001). This decrease can be attributed only to the amount of the adult-type hemoglobin present, and not to DPG, or to changes in the deltapH between plasma and red blood cells, because both remained stable during the last trimester.


1976 ◽  
Vol 231 (6) ◽  
pp. 1672-1678 ◽  
Author(s):  
MJ Levesque ◽  
AC Groom

Intrasplenic pH in vivo was deduced from measurements on blood drained from cat spleen during contraction with the inflow occluded. The pH of blood in the red pulp is normally 7.20, but stasis or reduced flow through the pulp causes pH to fall toward 6.8. The splenic pulp contains blood of high hematocrit. To evaluate the role of buffering by the red cells themselves, intrasplenic p/ in red cell-free spleens was, therefore, estimated atering and leaving the spleen during red cell washout. At inflow pH less than 6.8 the outflow pH was raised, at inflow pH = 6.8 there was no change, b,t at inflow pH greater than 6.8 the outflow pH was lowered. These results indicate that the pH environment of red cells in the spleen results indicate that the pH environment of red cells in the spleen results from the interplay of two separate factors: i) pH-determining elements of the splenic tissue that buffer at 6.8, and ii) buffering provided by red cells passing through the pulp.


Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1389-1393
Author(s):  
E Beutler ◽  
L Forman ◽  
C West

The addition of oxalate to blood stored in Citrate-phosphate-dextrose (CPD) produces a marked improvement in 2,3-diphosphoglycerate (2,3-DPG) preservation; an increase in 2,3-DPG levels can also be documented in short-term incubation studies. Oxalate is a potent in vitro inhibitor of red cell lactate dehydrogenase, monophosphoglycerate mutase, and pyruvate kinase (PK). In the presence of fructose 1,6-diphosphate the latter inhibitory effect is competitive with phospho(enol)pyruvate (PEP). Determination of the levels of intermediate compounds in red cells incubated with oxalate suggest the presence of inhibition at the PK step, indicating that this is the site of oxalate action. Apparent inhibition at the glyceraldehyde phosphate dehydrogenase step is apparently due to an increase in the NADH/NAD ratio. Oxalate had no effect on the in vivo viability of rabbit red cells stored in CPD preservatives for 21 days. Greater understanding of the toxicity of oxalate is required before it can be considered suitable as a component of preservative media, but appreciation of the mechanism by which it affects 2,3-DPG levels may be important in design of other blood additives. Malonate, the 3-carbon dicarboxylic acid analogue of oxalate late did not inhibit pyruvate kinase nor affect 2,3-DPG levels.


1980 ◽  
Vol 238 (1) ◽  
pp. H73-H79 ◽  
Author(s):  
P. A. Mueggler ◽  
G. Jones ◽  
J. S. Peterson ◽  
J. M. Bissonnette ◽  
R. D. Koler ◽  
...  

A rightward shift in the blood oxygen dissociation curve occurs during the 1st mo of canine life. A detailed peptide analysis indicated that dogs do not have a separate fetal hemoglobin. Other erythrocyte components such as ATP, K+, Na+, and H+ were excluded as significant mediators of the postnatal oxygen affinity change. Erythrocyte 2,3-DPG levels essentially zero in fetal dogs, increased rapidly during the 1st mo of canine life. There was a significant correlation between this postnatal 2,3-DPG increase and the postnatal decrease in blood oxygen affinity. Dialyzed hemolysates of fetal or adult canine blood have the same intrinsic oxygen affinity and the same response to normal adult levels of 2,3-DPG. Furthermore, the magnitude and direction of this 2,3-DPG-induced decrease in oxygen affinity in vitro are comparable to the in vivo postnatal change in oxygen affinity.


Blood ◽  
1973 ◽  
Vol 42 (6) ◽  
pp. 835-842 ◽  
Author(s):  
Michael Jensen ◽  
Stephen B. Shohet ◽  
David G. Nathan

Abstract An acquired membrane defect is believed to be responsible for the maintenance of the sickled shape in oxygenated irreversibly sickled cells (ISC), because the hemoglobin S in these cells is not in the aggregated, "sickled" state. In the present study, it is demonstrated that the acquisition of the membrane defect in vitro depends on cellular metabolism. Only if cellular ATP is almost completely depleted while the cells are sickled, do they become unable to resume the biconcave disk shape upon reoxygenation. If calcium is omitted from the incubation buffer, ISCs are not generated despite metabolic depletion. This suggests an action of ATP mediated through calcium metabolism similar to that which prevents membrane stiffening in normal red cells. No ISCs were produced by repeated sickling and unsickling. Thus, a membrane alteration occurring as a consequence of metabolic depletion seems to be a more important factor in the generation of ISC than sickling-unsickling induced fragmentation.


Blood ◽  
1972 ◽  
Vol 40 (5) ◽  
pp. 733-739 ◽  
Author(s):  
Blanche P. Alter ◽  
Yuet Wai Kan ◽  
David G. Nathan

Abstract Cyanate prevents sickling in vitro and apparently prolongs the survival of 51Cr-tagged sickle erythrocytes in vivo. Cautious interpretation is required because the effects of cyanate on 51Cr binding to sickle and fetal hemoglobin-containing red cells are unknown, and comparison of the effect of cyanate on sickle red cell survival to control red cell survival must be performed sequentially. We have studied the survival of sickle reticulocytes utilizing radioactive amino acids that are incorporated into hemoglobin. Two informed adult patients with sickle cell disease were studied. In each study, two 50-ml samples of blood were incubated separately with 14C- and 3H-leucine for 2 hr, after which 50 mM cyanate was added to one aliquot for 1 hr. The cells were then washed and reinfused. Frequent venous samples were obtained, and the specific activities of 14C and 3H in the hemoglobin were followed. The t ½ of the carbamylated cells was tripled, but remained below normal. This method provides a generally useful measurement of the influence of drugs bound to red cells on reticulocyte lifespan. The labels are incorporated into the hemoglobin molecule of the reticulocyte, and simultaneous comparison of the survivals of the same cohort of drug-treated and control cells is achieved.


Sign in / Sign up

Export Citation Format

Share Document