pH environmental of red cells in the spleen

1976 ◽  
Vol 231 (6) ◽  
pp. 1672-1678 ◽  
Author(s):  
MJ Levesque ◽  
AC Groom

Intrasplenic pH in vivo was deduced from measurements on blood drained from cat spleen during contraction with the inflow occluded. The pH of blood in the red pulp is normally 7.20, but stasis or reduced flow through the pulp causes pH to fall toward 6.8. The splenic pulp contains blood of high hematocrit. To evaluate the role of buffering by the red cells themselves, intrasplenic p/ in red cell-free spleens was, therefore, estimated atering and leaving the spleen during red cell washout. At inflow pH less than 6.8 the outflow pH was raised, at inflow pH = 6.8 there was no change, b,t at inflow pH greater than 6.8 the outflow pH was lowered. These results indicate that the pH environment of red cells in the spleen results indicate that the pH environment of red cells in the spleen results from the interplay of two separate factors: i) pH-determining elements of the splenic tissue that buffer at 6.8, and ii) buffering provided by red cells passing through the pulp.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 852-852
Author(s):  
Daniel Hidalgo ◽  
Jacob Bejder ◽  
Ramona Pop ◽  
Kyle Gellatly ◽  
Yung Hwang ◽  
...  

Abstract Erythroid terminal differentiation (ETD) entails cell divisions coupled to decreasing cell size. The tight link between the number of cell divisions and red cell size is apparent in nutritional deficiencies or genetic variants in which fewer cycles result in larger red cells. Here we investigated novel EpoR functions, finding that EpoR signaling disrupts the relationship between cell cycle number and cell size, simultaneously promoting rapid cycling and the formation of larger red cells. EpoR is essential for erythroblast survival, but it is unclear whether it has other non-redundant functions. To address this, we developed a genetic system in which we rescue mouse Epor -/- fetal liver progenitors from apoptosis by transduction with the anti-apoptotic protein Bcl-x L, and compare their ensuing differentiation with that of Epor -/- progenitors rescued with EpoR (Fig 1a). We found that the Bcl-x L survival signal, in the absence EpoR, supported formation of enucleated red cells. However, key ETD features were abnormal. First, Bcl-x L-transduced Epor -/- erythroblasts underwent slower and fewer cell cycles (Figure 1b), differentiating prematurely into enucleated red cells. Premature induction of the cyclin-dependent-kinase inhibitor p27 KIP1 was in part responsible for the fewer cycles in the absence of EpoR signaling. We confirmed that EpoR also stimulates rapid cycling in wild-type erythroblasts in vivo, using a mouse transgenic for a live-cell reporter of cell cycle speed. Second, using imaging flow cytometry, we found that Bcl-x L-transduced Epor -/- erythroblasts were smaller than EpoR-transduced Epor -/- cells (Fig 1c,d). By doubly transducing Epor -/- erythroblasts with both Bcl-x L and EpoR, we verified that EpoR absence, and not Bcl-x L overexpression, is responsible for the smaller size of Bcl-x L-transduced Epor -/- erythroblasts and reticulocytes. Bcl-x L-transduced Epor -/- erythroblasts failed to upregulate the transferrin receptor, suggesting that iron deficiency may be responsible for their smaller size. However, neither iron supplementation, nor transduction with the transferrin receptor, rescued their smaller size. Iron regulates cell size through Heme-regulated eIF2α kinase (HRI). To definitively test the role of iron and HRI, we generated mice doubly deleted for both EpoR and HRI. We then rescued both Epor -/- and Epor -/-Hri -/- -fetal liver cells in parallel, by transduction with either Bcl-x L or EpoR. In agreement with the known role of HRI as a negative regulator of erythroblast size, both Bcl-x L- transduced and EpoR-transduced erythroblasts were larger on the Epor -/-Hri -/- genetic background. However, the difference in size between Bcl-x L and EpoR-rescued erythroblasts persisted in Epor -/-Hri -/- erythroblasts and reticulocytes (Fig 1c,d), conclusively showing that EpoR signaling regulates cell size independently of the HRI pathway. EpoR promoted increased erythroblast and reticulocyte cell size in wild-type mice in vitro and in vivo, in response to Epo concentrations ranging from 10 to 10,000 mU/ml. We also evaluated the effect of Epo on red cell size in humans, in two independent studies, where healthy volunteers were administered Epo for either 3 weeks (20 IU /kg every 48 hours, 25 subjects, Study #1) or for 7 weeks (weekly Epo dosing that increased hemoglobin by 10 -15%; 24 subjects, Study #2). In a third intervention, 21 subjects participated in a randomized double-blind placebo-controlled crossover study in which 900 ml of whole blood was withdrawn from the treatment group by venipuncture. In all three studies, the increase in MCV in the treatment groups persisted long after Epo and reticulocyte levels returned to baseline (Figure 2). There was no correlation between MCV and the reticulocyte count, whose time courses were clearly divergent (r < 0.1, Pearson's product-moment correlation). Further, computational simulation suggests that the extent and duration of the increase in MCV is unlikely to be the result of skewing of the circulating red cell population in favor of younger, larger red cells. Our work reveals a paradoxical EpoR-driven increase in erythroblast cycling simultaneously with increased erythroblast and red cell size. It suggests that EpoR alters the relationship between cell cycle and biomass in erythroblasts. It further suggests that hypoxia, anemia and other high-Epo syndromes are new diagnostic interpretations of increased MCV in the clinic. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


1981 ◽  
Vol 59 (1) ◽  
pp. 53-58 ◽  
Author(s):  
M. J. Levesque ◽  
A. C. Groom

Nine-tenths of the inflowing blood passes through the normal relaxed spleen via a fast arteriovenous pathway whereas the remainder travels slowly via the red pulp. However, flow through this fast pathway diminishes to zero when the organ is distended by perfusion at high venous pressure. The present investigation, in which a slug-injection procedure was used to determine the volumes of distribution of red cells and 125I-labelled albumin in isolated, Ringer-perfused cat spleens during a single transit, has shown that in spleens contracted by noradrenaline the entire inflow passes via the fast arteriovenous pathway. The peak outflow concentration of 125I-labelled albumin occurred much later (factor 2.03) than that of red cells. This difference is too great to be accounted for solely by axial accumulation of red cells within a closed system of vessels in vivo and indicates that albumin was distributed throughout a significantly larger space than red cells. These findings are explained in terms of the classical observations of MacKenzie and co-workers on red cell movement in transilluminated mouse spleens during contraction. Whether the splenic retention of damaged red cells would change as a result of the altered flow pathways is not yet known.


1964 ◽  
Vol 47 (3_Suppl) ◽  
pp. S28-S36
Author(s):  
Kailash N. Agarwal
Keyword(s):  

ABSTRACT Red cells were incubated in vitro with sulfhydryl inhibitors and Rhantibody with and without prior incubation with prednisolone-hemisuccinate. These erythrocytes were labelled with Cr51 and P32 and their disappearance in vivo after autotransfusion was measured. Prior incubation with prednisolone-hemisuccinate had no effect on the rate of red cell disappearance. The disappearance of the cells was shown to take place without appreciable intravascular destruction.


Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1389-1393
Author(s):  
E Beutler ◽  
L Forman ◽  
C West

The addition of oxalate to blood stored in Citrate-phosphate-dextrose (CPD) produces a marked improvement in 2,3-diphosphoglycerate (2,3-DPG) preservation; an increase in 2,3-DPG levels can also be documented in short-term incubation studies. Oxalate is a potent in vitro inhibitor of red cell lactate dehydrogenase, monophosphoglycerate mutase, and pyruvate kinase (PK). In the presence of fructose 1,6-diphosphate the latter inhibitory effect is competitive with phospho(enol)pyruvate (PEP). Determination of the levels of intermediate compounds in red cells incubated with oxalate suggest the presence of inhibition at the PK step, indicating that this is the site of oxalate action. Apparent inhibition at the glyceraldehyde phosphate dehydrogenase step is apparently due to an increase in the NADH/NAD ratio. Oxalate had no effect on the in vivo viability of rabbit red cells stored in CPD preservatives for 21 days. Greater understanding of the toxicity of oxalate is required before it can be considered suitable as a component of preservative media, but appreciation of the mechanism by which it affects 2,3-DPG levels may be important in design of other blood additives. Malonate, the 3-carbon dicarboxylic acid analogue of oxalate late did not inhibit pyruvate kinase nor affect 2,3-DPG levels.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1427-1431 ◽  
Author(s):  
N Fortier ◽  
LM Snyder ◽  
F Garver ◽  
C Kiefer ◽  
J McKenney ◽  
...  

Abstract In vitro induced oxidative damage to normal human RBCs has previously been shown to result in increased membrane rigidity as a consequence of the generation of a protein complex between hemoglobin and spectrin. In order to determine if in vivo generated hemoglobin-spectrin complexes may play a role in increased membrane rigidity of certain pathologic red cells, we measured both these parameters in membranes prepared from hereditary xerocytosis (Hx), sickle cell disease (Sc), and red cells from thalassemia minor (beta thal). Membranes were prepared from density-fractionated red cells, and membrane deformability was measured using an ektacytometer. Hemoglobin-spectrin complex was determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel analysis, as well as by Western blot analysis using a monoclonal antibody against the beta- subunit of hemoglobin. For these three types of pathologic red cells, progressive cellular dehydration was associated with increased membrane rigidity and increased content of hemoglobin-spectrin complex. Moreover, the increase in membrane rigidity appeared to be directly related to the quantity of hemoglobin-spectrin complex associated with the membrane. Our findings imply that hemoglobin-spectrin complex is generated in vivo, and this in turn results in increased membrane rigidity of certain pathologic red cells. The data further suggest that oxidative crosslinking may play an important role in the pathophysiology of certain red cell disorders.


Blood ◽  
1973 ◽  
Vol 42 (6) ◽  
pp. 835-842 ◽  
Author(s):  
Michael Jensen ◽  
Stephen B. Shohet ◽  
David G. Nathan

Abstract An acquired membrane defect is believed to be responsible for the maintenance of the sickled shape in oxygenated irreversibly sickled cells (ISC), because the hemoglobin S in these cells is not in the aggregated, "sickled" state. In the present study, it is demonstrated that the acquisition of the membrane defect in vitro depends on cellular metabolism. Only if cellular ATP is almost completely depleted while the cells are sickled, do they become unable to resume the biconcave disk shape upon reoxygenation. If calcium is omitted from the incubation buffer, ISCs are not generated despite metabolic depletion. This suggests an action of ATP mediated through calcium metabolism similar to that which prevents membrane stiffening in normal red cells. No ISCs were produced by repeated sickling and unsickling. Thus, a membrane alteration occurring as a consequence of metabolic depletion seems to be a more important factor in the generation of ISC than sickling-unsickling induced fragmentation.


Blood ◽  
1972 ◽  
Vol 40 (5) ◽  
pp. 733-739 ◽  
Author(s):  
Blanche P. Alter ◽  
Yuet Wai Kan ◽  
David G. Nathan

Abstract Cyanate prevents sickling in vitro and apparently prolongs the survival of 51Cr-tagged sickle erythrocytes in vivo. Cautious interpretation is required because the effects of cyanate on 51Cr binding to sickle and fetal hemoglobin-containing red cells are unknown, and comparison of the effect of cyanate on sickle red cell survival to control red cell survival must be performed sequentially. We have studied the survival of sickle reticulocytes utilizing radioactive amino acids that are incorporated into hemoglobin. Two informed adult patients with sickle cell disease were studied. In each study, two 50-ml samples of blood were incubated separately with 14C- and 3H-leucine for 2 hr, after which 50 mM cyanate was added to one aliquot for 1 hr. The cells were then washed and reinfused. Frequent venous samples were obtained, and the specific activities of 14C and 3H in the hemoglobin were followed. The t ½ of the carbamylated cells was tripled, but remained below normal. This method provides a generally useful measurement of the influence of drugs bound to red cells on reticulocyte lifespan. The labels are incorporated into the hemoglobin molecule of the reticulocyte, and simultaneous comparison of the survivals of the same cohort of drug-treated and control cells is achieved.


Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1389-1393 ◽  
Author(s):  
E Beutler ◽  
L Forman ◽  
C West

Abstract The addition of oxalate to blood stored in Citrate-phosphate-dextrose (CPD) produces a marked improvement in 2,3-diphosphoglycerate (2,3-DPG) preservation; an increase in 2,3-DPG levels can also be documented in short-term incubation studies. Oxalate is a potent in vitro inhibitor of red cell lactate dehydrogenase, monophosphoglycerate mutase, and pyruvate kinase (PK). In the presence of fructose 1,6-diphosphate the latter inhibitory effect is competitive with phospho(enol)pyruvate (PEP). Determination of the levels of intermediate compounds in red cells incubated with oxalate suggest the presence of inhibition at the PK step, indicating that this is the site of oxalate action. Apparent inhibition at the glyceraldehyde phosphate dehydrogenase step is apparently due to an increase in the NADH/NAD ratio. Oxalate had no effect on the in vivo viability of rabbit red cells stored in CPD preservatives for 21 days. Greater understanding of the toxicity of oxalate is required before it can be considered suitable as a component of preservative media, but appreciation of the mechanism by which it affects 2,3-DPG levels may be important in design of other blood additives. Malonate, the 3-carbon dicarboxylic acid analogue of oxalate late did not inhibit pyruvate kinase nor affect 2,3-DPG levels.


Blood ◽  
1985 ◽  
Vol 66 (1) ◽  
pp. 220-223 ◽  
Author(s):  
RM Bookchin ◽  
EF Jr Roth ◽  
VL Lew

Abstract The belief is widely held, on the basis of indirect evidence, that a substantial, even brief elevation of red cell Ca content must result in a marked shortening of circulatory survival. To test this notion directly, we exposed rabbit red cells in vitro to the ionophore A23187 and Ca so as to produce sustained uniform cell Ca levels of 40 to 360 mumol/L cells for one to 60 minutes, and compared the survival of the Ca-loaded cells in vivo with that of ionophore-treated controls, simultaneously, in the same rabbits. Despite marked reductions in cell adenosine triphosphate and dehydration of the Ca-exposed cells prior to reinfusion, the majority of cells, all of which had experienced these high cytoplasmic Ca levels, showed normal or near-normal survival in the circulation.


1976 ◽  
Vol 54 (4) ◽  
pp. 477-484 ◽  
Author(s):  
H. B. Geiger ◽  
S. H. Song ◽  
A. C. Groom

Isolated, denervated, cat spleens were perfused at constant flow with modified Ringer solution. Perfusion pressure, outflow rate, and outflow red cell concentration were measured against time. After splenic perfusion by 500 ml solution the cell washout curve became a single exponential function, indicating that only cells from the most slowly exchanging red cell compartment remained (these are immature and abnormal cells which adhere to the fine structures of the red pulp). Splenic contraction was induced by injection of 5 μg noradrenaline into the inflow after perfusion by 600 and 1000 ml of fluid, respectively; outflow cell concentration rose 17-fold before returning to baseline value and 32% of red cells in the spleen were expelled. The time course of changes in cell concentration was similar in shape but delayed with respect to that of outflow rate. The transit time of the cells from the site of release to the splenic vein must have exceeded 40 s, which is consistent only with release from the red pulp. Furthermore, at the peak of the cell concentration curve the mean reticulocyte count was 37.8%. Thus immature and abnormal red cells, which comprise the slowly-exchanging compartment, are indeed released from the spleen during contraction.


Sign in / Sign up

Export Citation Format

Share Document