scholarly journals Platelet inhibiton by sodium nitroprusside, a smooth muscle inhibitor

Blood ◽  
1976 ◽  
Vol 47 (6) ◽  
pp. 957-961 ◽  
Author(s):  
A Saxon ◽  
HE Kattlove

Abstract The effects of sodium nitroprusside (N.P.), a pure smooth muscle inhibitor, on platelet function were studied. Platelet-rich plasmas (PRP) from normal controls and from patients receiving N.P. were studied in vitro for aggregation in response to adenosine diphosphate (ADP), epinephrine, and collagen. Platelet ADP release (release reaction) was also investigated. Normal platelets demonstrated marked inhibition of aggregation when incubated with N.P. for 3 min. Prolonging the incubation was without additional effect. ADP and ATP release from platelets in response to collagen was also inhibited. PRP from patients receiving nitroprusside at concentrations between 25 mug/min an 165 mug/min showed inhibition of aggregation when compared to findings prior to the administration of N.P. N.P. acts by inhibiting contractile proteins and thus platelet ADP release and aggregation may depend on contraction of platelet smooth muscle-like protein, thrombosthenin.

Blood ◽  
1976 ◽  
Vol 47 (6) ◽  
pp. 957-961
Author(s):  
A Saxon ◽  
HE Kattlove

The effects of sodium nitroprusside (N.P.), a pure smooth muscle inhibitor, on platelet function were studied. Platelet-rich plasmas (PRP) from normal controls and from patients receiving N.P. were studied in vitro for aggregation in response to adenosine diphosphate (ADP), epinephrine, and collagen. Platelet ADP release (release reaction) was also investigated. Normal platelets demonstrated marked inhibition of aggregation when incubated with N.P. for 3 min. Prolonging the incubation was without additional effect. ADP and ATP release from platelets in response to collagen was also inhibited. PRP from patients receiving nitroprusside at concentrations between 25 mug/min an 165 mug/min showed inhibition of aggregation when compared to findings prior to the administration of N.P. N.P. acts by inhibiting contractile proteins and thus platelet ADP release and aggregation may depend on contraction of platelet smooth muscle-like protein, thrombosthenin.


1973 ◽  
Vol 30 (02) ◽  
pp. 334-338 ◽  
Author(s):  
Felisa C. Molinas

SummaryIt has been postulated that the high phenol and phenolic acids plasmatic levels found in patients with chronic renal failure are contributory factors in the abnormal platelet function described in these patients. This hypothesis was corroborated by “in vitro” studies showing the deleterious effect of these compounds on certain platelet function after pre-incubation of PRP with phenol and phenolic compounds. The present studies were conducted to determine the influence of phenolic compounds on platelet release reaction. It was found that phenol inhibited from 62.5 to 100% the effect of the aggregating agents thrombin, adrenaline and ADP on platelet 5-HT-14C release. The phenolic acids p-, m-, and o-HPAA inhibited from 36.35 to 94.8% adrenaline and ADP-induced platelet 5-HT-14C release. Adrenaline-induced platelet ADP release was inhibited from 27.45 to 38.10% by the phenolic compounds. These findings confirm the hypothesis that phenolic compounds interfere with platelet function through the inhibition of the release reaction.


1973 ◽  
Vol 30 (03) ◽  
pp. 494-498 ◽  
Author(s):  
G de Gaetano ◽  
J Vermylen

SummaryThrombelastograms of both native blood and re-calcified platelet-rich plasma samples taken from subjects given a single oral dose of aspirin (1 gram) were not significantly different from the pretreatment recordings. Aspirin also did not modify the thrombelastogram when preincubated in vitro with platelet-rich plasma at concentrations inhibiting the platelet “release reaction” by collagen. Thrombelastography therefore cannot evaluate the effect of aspirin on platelet function.


1981 ◽  
Vol 45 (03) ◽  
pp. 290-293 ◽  
Author(s):  
Peter H Levine ◽  
Danielle G Sladdin ◽  
Norman I Krinsky

SummaryIn the course of studying the effects on platelets of the oxidant species superoxide (O- 2), Of was generated by the interaction of xanthine oxidase plus xanthine. Surprisingly, gel-filtered platelets, when exposed to xanthine oxidase in the absence of xanthine substrate, were found to generate superoxide (O- 2), as determined by the reduction of added cytochrome c and by the inhibition of this reduction in the presence of superoxide dismutase.In addition to generating Of, the xanthine oxidase-treated platelets display both aggregation and evidence of the release reaction. This xanthine oxidase induced aggreagtion is not inhibited by the addition of either superoxide dismutase or cytochrome c, suggesting that it is due to either a further metabolite of O- 2, or that O- 2 itself exerts no important direct effect on platelet function under these experimental conditions. The ability of Of to modulate platelet reactions in vivo or in vitro remains in doubt, and xanthine oxidase is an unsuitable source of O- 2 in platelet studies because of its own effects on platelets.


1977 ◽  
Vol 38 (03) ◽  
pp. 0640-0651 ◽  
Author(s):  
B. V Chater ◽  
A. R Williams

SummaryPlatelets were found to aggregate spontaneously when exposed to ultrasound generated by a commercial therapeutic device. At a given frequency, aggregation was found to be a dose-related phenomenon, increasing intensities of ultrasound inducing more extensive and more rapid aggregation. At any single intensity, the extent aggregation was increased as the frequency of the applied ultrasound was decreased (from 3.0 to 0.75 MHz).Ultrasound-induced platelet aggregation was found to be related to overall platelet sensitivity to adenosine diphosphate. More sensitive platelets were found to aggregate spontaneously at lower intensities of sound, and also the maximum extent of aggregation was found to be greater. Examination of ultrasound-induced platelet aggregates by electron microscopy demonstrated that the platelets had undergone the release reaction.The observation that haemoglobin was released from erythrocytes in whole blood irradiated under identical physical conditions suggests that the platelets are being distrupted by ultrasonic cavitation (violent gas/bubble oscillation).It is postulated that overall platelet aggregation is the result of two distinct effects. Firstly, the direct action of ultrasonic cavitation disrupts a small proportion of the platelet population, resulting in the liberation of active substances. These substances produce aggregation, both directly and indirectly by inducing the physiological release reaction in adjacent undamaged platelets.


1982 ◽  
Vol 47 (02) ◽  
pp. 150-153 ◽  
Author(s):  
P Han ◽  
C Boatwright ◽  
N G Ardlie

SummaryVarious cardiovascular drugs such as nitrates and propranolol, used in the treatment of coronary artery disease have been shown to have an antiplatelet effect. We have studied the in vitro effects of two antiarrhythmic drugs, verapamil and disopyramide, and have shown their inhibitory effect on platelet function. Verapamil, a calcium channel blocker, inhibited the second phase of platelet aggregation induced by adenosine diphosphate (ADP) and inhibited aggregation induced by collagen. Disopyramide similarly inhibited the second phase of platelet aggregation caused by ADP and aggregation induced by collagen. Either drug in synergism with propranolol inhibited ADP or collagen-induced platelet aggregation. Disopyramide at high concentrations inhibited arachidonic add whereas verapamil was without effect. Verapamil, but not disopyramide, inhibited aggregation induced by the ionophore A23187.


Blood ◽  
1996 ◽  
Vol 87 (9) ◽  
pp. 3758-3767 ◽  
Author(s):  
SM Yu ◽  
SY Tsai ◽  
SC Kuo ◽  
JT Ou

The effect of A02131–1 [3-(5′-hydroxymethyl-2′-furyl)-1-benzyl thieno (3,2-c)pyrazole], a cGMP-specific phosphodiesterase (PDE) inhibitor, on platelet function was investigated. The compound was found to inhibit the aggregation of and adenosine triphosphate (ATP) release from human platelet-rich plasma and washed platelets that were induced by aggregation inducing drugs such as arachidonic acid (AA), collagen, U46619, platelet-activating factor (PAF), adenosine diphosphate (ADP) and A23187, and the inhibitory effect was concentration-dependent. A02131–1 also disaggregated the performed platelet aggregates induced by these inducers. Thromboxane B2 (TXB2) formations caused by collagen, PAF, ADP, and A23187 were inhibited by A02131–1 at concentrations that did not affect the AA-induced formation of TXB2 and prostaglandin D2 (PGD2). A02131–1 suppressed both the generation of inositol 1,4,5- triphosphate (IP3) and the increase of intracellular Ca2+ concentration stimulated by these aggregation inducers. A02131–1 was shown to increase the cAMP and cGMP levels in platelets and the extent was found to be dependent on concentration as well as time. A02131–1 increased the cAMP level much more slowly than the cGMP level. Activities of adenylate cyclase, guanylate cyclase, and PDEs (type I and III) were not altered by A02131–1. However, the activity of cGMP-specific PDE (type V) was inhibited by A02131–1. The antiplatelet aggregation activity and the effect on raising cAMP level of A02131–1 were both potentiated by prostaglandin E1 (PGE1). In the mouse tail bleeding test, A02131–1 was clearly shown to be more effective than dipyridamole in prolonging the tail bleeding time of conscious mice. These data indicate that A02131–1 is a cGMP-specific PDE (type V) inhibitor in human platelets.


Blood ◽  
1970 ◽  
Vol 35 (5) ◽  
pp. 659-668 ◽  
Author(s):  
HERMAN E. KATTLOVE ◽  
THEODORE H. SPAET

Abstract Sodium chromate inhibits platelet function in vitro. The primary effect is inhibition of connective tissue-induced aggregation. In addition, the primary wave of epinephrine-induced aggregation is moderately inhibited and adenosine diphosphate-induced aggregation is mildly inhibited. The effect on connective tissue-induced aggregation is due to inhibition of the platelet "release reaction"; chromate inhibited the release of adenine nucleotides, 14C labeled serotonin and the activation of platelet factor III normally caused by connective tissue. The amount of chromium which must be bound to platelets to inhibit aggregation is 10-100 times the amount of radioactive chromium bound to platelets under the usual conditions of labeling for survival studies. However, this does not imply that chromium labeled platelets function normally.


2001 ◽  
Vol 95 (5) ◽  
pp. 1220-1225 ◽  
Author(s):  
Nicola A. Horn ◽  
Lothar de Rossi ◽  
Tilo Robitzsch ◽  
Klaus E. Hecker ◽  
Gabriele Hutschenreuter ◽  
...  

Background Previous studies have reported conflicting results about the effect of sevoflurane on platelet aggregation. To clarify this point, we investigated the effects of sevoflurane on platelet antigen expression and function in vitro. Methods Human whole blood was incubated for 1 h with 0.5 and 1 minimum alveolar concentration sevoflurane, 21% O(2), and 5% CO(2). A control sample was kept at the same conditions without sevoflurane. After stimulation with adenosine diphosphate or thrombin receptor agonist peptide 6, samples were stained with fluorochrome conjugated antibodies, and the expression of platelet glycoproteins GPIIb/IIIa, GPIb, and P-selectin, as well as activated GPIIb/IIIa, were measured with two-color flow cytometry. In addition, platelet function was assessed by means of thromboelastography and using the platelet function analyzer 100. Results Already in subanesthetic concentrations, sevoflurane inhibits unstimulated and agonist-induced GPIIb/IIIa surface expression and activated GPIIb/IIIa expression on platelets in whole blood. The agonist-induced redistribution of GPIb into the open canalicular system was also impaired by sevoflurane, whereas no effect on P-selectin expression in activated platelets could be found. Sevoflurane significantly reduced the maximum thromboelastographic amplitude. Furthermore, platelet function analyzer 100 closure times were significantly prolonged. Conclusion The results show that sevoflurane significantly impairs platelet antigen expression in vitro. It is especially the inhibition of GPIIb/IIIa expression and activation that impairs bleeding time as reflected in thromboelastographic measurements and platelet function analyzer 100 closure times. The exact inhibitory mechanism remains unclear.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3908-3908
Author(s):  
Shuangfeng Xie ◽  
Songmei Yin ◽  
Danian Nie ◽  
Yiqing Li ◽  
Xiuju Wang ◽  
...  

Abstract Platelet activation, including platelet adhesion, platelet aggregation and platelet release reaction, played an important role in thrombogenesis. We all knew that Platelet glycoprotein IIb/IIIa antagonist was the most effective drug for anti-aggregation, while we don’t know clearly its effect on platelet release reaction and the relations between its effects on platelet aggregation and release reaction. Platelet release reactions included α-granules and dense granules releasing. When α-granules were released, its membrane glycoprotein CD62p was expressed in the platelet membrane. We used the CD62p expression as the index of platelet release reaction. In the current study, the 4-peptides RGDS (Arg-Gly-Asp-Ser) was used as glycoprotein IIb/IIIa antagonist. We detected the effects of RGDS on platelet aggregation and CD62p expression induced by adenosine diphosphate (ADP) (finial concentration, 5μmol/L) in vitro. 50, 100, 200, 400 and 800μmol/L RGDS were used separately in the test. RGDS of each concentration could significantly inhibited maximal platelet aggregation (PAG(M)) induced by ADP, the 50% inhibiting concentration was approximately 200μmol/L. 800μmol/L RGDS could inhibited PAG(M) by 80.48±8.18%. Only ≥200μmol/L RGDS could significantly inhibited platelet CD62p expression. 800μmol/L RGDS could inhibit platelet CD62p expression by 27.31±9.74%. The inhibiting effect of RGDS on PAG(M) and platelet CD62p expression had significantly correlation (r =0.976, P<0.05). These results indicated that RGDS in low concentration (<200μmol) had little negative effect on platelet release reaction induced by ATP, while in relatively high concentration (≥200μmol) RGDS could inhibit platelet release reaction. When RGDS concentrations were same its effect on platelet release reaction was much less than that on platelet aggregation, which indicated that platelet glycoprotein IIb/IIIa compound could only partly participated in the platelet release reaction but fully participated in platelet aggregation induced by ADP.


Sign in / Sign up

Export Citation Format

Share Document