scholarly journals Enzymatic conjugation of erythrocyte glutathione with 1-chloro-2,4- dinitrobenzene: the fate of glutathione conjugate in erythrocytes and the effect of glutathione depletion on hemoglobin

Blood ◽  
1981 ◽  
Vol 58 (4) ◽  
pp. 733-738 ◽  
Author(s):  
YC Awasthi ◽  
HS Garg ◽  
DD Dao ◽  
CA Partridge ◽  
SK Srivastava

Abstract Erythrocyte glutathione (GSH) can be rapidly depleted by incubating the cells with 1-chloro-2,4-dinitrobenzene (CDNB), which forms 2,4- dinitrophenyl-S-glutathione with GSH through the reaction catalyzed by glutathione S-transferase. GSH-CDNB conjugate thus formed stays undegraded within the erythrocytes. This indicates that in the erythrocytes, mercapturic acid pathway is inoperative. Depletion of GSH in the intact erythrocytes by CDNB results in rapid oxidation of large amounts of hemoglobin to methemoglobin. When glutathione S-transferase- free hemolysate of erythrocytes is incubated with CDNB, the depletion of GSH as well as methemoglobin formation are minimal. Glutathione peroxidase and glutathione reductase activities of the erythrocytes are not affected by CDNB. These studies provide a specific enzymatic method for rapid removal of erythrocyte GSH and also indicate that GSH is vital in maintaining a reduced environment within the erythrocytes.

Blood ◽  
1981 ◽  
Vol 58 (4) ◽  
pp. 733-738 ◽  
Author(s):  
YC Awasthi ◽  
HS Garg ◽  
DD Dao ◽  
CA Partridge ◽  
SK Srivastava

Erythrocyte glutathione (GSH) can be rapidly depleted by incubating the cells with 1-chloro-2,4-dinitrobenzene (CDNB), which forms 2,4- dinitrophenyl-S-glutathione with GSH through the reaction catalyzed by glutathione S-transferase. GSH-CDNB conjugate thus formed stays undegraded within the erythrocytes. This indicates that in the erythrocytes, mercapturic acid pathway is inoperative. Depletion of GSH in the intact erythrocytes by CDNB results in rapid oxidation of large amounts of hemoglobin to methemoglobin. When glutathione S-transferase- free hemolysate of erythrocytes is incubated with CDNB, the depletion of GSH as well as methemoglobin formation are minimal. Glutathione peroxidase and glutathione reductase activities of the erythrocytes are not affected by CDNB. These studies provide a specific enzymatic method for rapid removal of erythrocyte GSH and also indicate that GSH is vital in maintaining a reduced environment within the erythrocytes.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Israel Pérez-Torres ◽  
Verónica Guarner-Lans ◽  
Alejandra Zúñiga-Muñoz ◽  
Rodrigo Velázquez Espejel ◽  
Alfredo Cabrera-Orefice ◽  
...  

We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes.


1983 ◽  
Vol 29 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Carmine Di Ilio ◽  
Giovanni Polidoro ◽  
Arduino Arduini ◽  
Antonio Muccini ◽  
Giorgio Federici

2020 ◽  
Vol 33 (11) ◽  
pp. 2863-2871
Author(s):  
Alena Tierbach ◽  
Ksenia J. Groh ◽  
René Schoenenberger ◽  
Kristin Schirmer ◽  
Marc J.-F. Suter

1988 ◽  
Vol 66 (8) ◽  
pp. 1048-1052 ◽  
Author(s):  
P. F. Bauman ◽  
T. K. Smith ◽  
T. M. Bray

Hepatic glutathione concentration and glutathione-dependent enzymes, glutathione S-transferase, glutathione peroxidase, and glutathione reductase, are important for protection against toxic compounds. Rats were fed diets containing 4, 7.5, 15, or 45% protein for 2 weeks. Glutathione and cysteine concentrations in rats fed the 4 and 7.5% protein diets were significantly lower (p < 0.05) than in rats fed the 15 and 45% protein diets. Glutathione S-transferase activity increased with increasing dietary protein. Glutathione peroxidase activity was significantly lower (p < 0.05) in rats fed 4 and 7.5% protein compared with rats fed 15 and 45% protein, whereas the activity of glutathione reductase was higher in rats fed 4 and 7.5% protein then in rats fed 15 or 45% protein. Dietary sulfur amino acids alone could account for the increase in glutathione concentration resulting from the increase in dietary protein from 7.5 to 15%. The limited availability of glutathione in animals fed the low protein diets could reduce the potential for detoxification of xenobiotics.


2019 ◽  
Vol 49 (10) ◽  
pp. 819-929 ◽  
Author(s):  
Patrick E. Hanna ◽  
M. W. Anders

Sign in / Sign up

Export Citation Format

Share Document