scholarly journals Monoclonal antibodies specific for globin chains

Blood ◽  
1983 ◽  
Vol 61 (3) ◽  
pp. 530-539 ◽  
Author(s):  
G Stamatoyannopoulos ◽  
M Farquhar ◽  
D Lindsley ◽  
M Brice ◽  
T Papayannopoulou ◽  
...  

Abstract Six monoclonal antibodies specific for human globin chains are described. They are produced by stable clones obtained by raising hybridomas using cells of mice immunized with either adult or fetal hemoglobin. Characterization of the antibodies included testing against tetrameric human and other animal hemoglobins, isolated hemoglobin chains, and when indicated, cyanogen bromide fragments. Monoclonals 16- 2 and 37–8 are beta-chain specific. Antibody 31–2 recognizes an antigenic determinant common to the alpha and beta subunits. Monoclonal 30–3 recognizes determinants best expressed in the alpha 2 beta 2 tetramer. Antibody 45–1 recognizes a determinant common to beta and gamma subunits, while antibody 51–7 is gamma-chain specific. None of the monoclonal antibodies recognizes mouse hemoglobin, and they display significant differences in binding to hemoglobins of various species. The species-specific reactions and the knowledge of the primary structures of globins allowed deductions about the antigenic sites recognized by two of the monoclonals (16–2 and 45–1). These antihemoglobin monoclonal antibodies will provide useful probes for studying hemoglobin expression in vivo and in vitro.

Blood ◽  
1983 ◽  
Vol 61 (3) ◽  
pp. 530-539 ◽  
Author(s):  
G Stamatoyannopoulos ◽  
M Farquhar ◽  
D Lindsley ◽  
M Brice ◽  
T Papayannopoulou ◽  
...  

Six monoclonal antibodies specific for human globin chains are described. They are produced by stable clones obtained by raising hybridomas using cells of mice immunized with either adult or fetal hemoglobin. Characterization of the antibodies included testing against tetrameric human and other animal hemoglobins, isolated hemoglobin chains, and when indicated, cyanogen bromide fragments. Monoclonals 16- 2 and 37–8 are beta-chain specific. Antibody 31–2 recognizes an antigenic determinant common to the alpha and beta subunits. Monoclonal 30–3 recognizes determinants best expressed in the alpha 2 beta 2 tetramer. Antibody 45–1 recognizes a determinant common to beta and gamma subunits, while antibody 51–7 is gamma-chain specific. None of the monoclonal antibodies recognizes mouse hemoglobin, and they display significant differences in binding to hemoglobins of various species. The species-specific reactions and the knowledge of the primary structures of globins allowed deductions about the antigenic sites recognized by two of the monoclonals (16–2 and 45–1). These antihemoglobin monoclonal antibodies will provide useful probes for studying hemoglobin expression in vivo and in vitro.


1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 78
Author(s):  
Lachlan A. Bourke ◽  
Christina N. Zdenek ◽  
Edgar Neri-Castro ◽  
Melisa Bénard-Valle ◽  
Alejandro Alagón ◽  
...  

The toxin composition of snake venoms and, thus, their functional activity, can vary between and within species. Intraspecific venom variation across a species’ geographic range is a major concern for antivenom treatment of envenomations, particularly for countries like French Guiana that lack a locally produced antivenom. Bothrops asper and Bothrops atrox are the most medically significant species of snakes in Latin America, both producing a variety of clinical manifestations, including systemic bleeding. These pathophysiological actions are due to the activation by the venom of the blood clotting factors Factor X and prothrombin, thereby causing severe consumptive coagulopathy. Both species are extremely wide-ranging, and previous studies have shown their venoms to exhibit regional venom variation. In this study, we investigate the differential coagulotoxic effects on human plasma of six venoms (four B. asper and two B. atrox samples) from different geographic locations, spanning from Mexico to Peru. We assessed how the venom variation of these venom samples affects neutralisation by five regionally available antivenoms: Antivipmyn, Antivipmyn-Tri, PoliVal-ICP, Bothrofav, and Soro Antibotrópico (SAB). The results revealed both inter- and intraspecific variations in the clotting activity of the venoms. These variations in turn resulted in significant variation in antivenom efficacy against the coagulotoxic effects of these venoms. Due to variations in the venoms used in the antivenom production process, antivenoms differed in their species-specific or geographical neutralisation capacity. Some antivenoms (PoliVal-ICP, Bothrofav, and SAB) showed species-specific patterns of neutralisation, while another antivenom (Antivipmyn) showed geographic-specific patterns of neutralisation. This study adds to current knowledge of Bothrops venoms and also illustrates the importance of considering evolutionary biology when developing antivenoms. Therefore, these results have tangible, real-world implications by aiding evidence-based design of antivenoms for treatment of the envenomed patient. We stress that these in vitro studies must be backed by future in vivo studies and clinical trials before therapeutic guidelines are issued regarding specific antivenom use in a clinical setting.


2021 ◽  
Vol 22 (9) ◽  
pp. 4368
Author(s):  
Heriberto Rodriguez-Martinez ◽  
Emilio A. Martinez ◽  
Juan J. Calvete ◽  
Fernando J. Peña Vega ◽  
Jordi Roca

Seminal plasma (SP), the non-cellular component of semen, is a heterogeneous composite fluid built by secretions of the testis, the epididymis and the accessory sexual glands. Its composition, despite species-specific anatomical peculiarities, consistently contains inorganic ions, specific hormones, proteins and peptides, including cytokines and enzymes, cholesterol, DNA and RNA—the latter often protected within epididymis- or prostate-derived extracellular vesicles. It is beyond question that the SP participates in diverse aspects of sperm function pre-fertilization events. The SP also interacts with the various compartments of the tubular genital tract, triggering changes in gene function that prepares for an eventual successful pregnancy; thus, it ultimately modulates fertility. Despite these concepts, it is imperative to remember that SP-free spermatozoa (epididymal or washed ejaculated) are still fertile, so this review shall focus on the differences between the in vivo roles of the SP following semen deposition in the female and those regarding additions of SP on spermatozoa handled for artificial reproduction, including cryopreservation, from artificial insemination to in vitro fertilization. This review attempts, including our own results on model animal species, to critically summarize the current knowledge of the reproductive roles played by SP components, particularly in our own species, which is increasingly affected by infertility. The ultimate goal is to reconcile the delicate balance between the SP molecular concentration and their concerted effects after temporal exposure in vivo. We aim to appraise the functions of the SP components, their relevance as diagnostic biomarkers and their value as eventual additives to refine reproductive strategies, including biotechnologies, in livestock models and humans.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Merricka C. Livingstone ◽  
Alexis A. Bitzer ◽  
Alish Giri ◽  
Kun Luo ◽  
Rajeshwer S. Sankhala ◽  
...  

AbstractPlasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.


2013 ◽  
Vol 2013 ◽  
pp. 1-21 ◽  
Author(s):  
Giuseppe Sautto ◽  
Nicasio Mancini ◽  
Giacomo Gorini ◽  
Massimo Clementi ◽  
Roberto Burioni

More than 150 arboviruses belonging to different families are known to infect humans, causing endemic infections as well as epidemic outbreaks. Effective vaccines to limit the occurrence of some of these infections have been licensed, while for the others several new immunogens are under development mostly for their improvements concerning safety and effectiveness profiles. On the other hand, specific and effective antiviral drugs are not yet available, posing an urgent medical need in particular for emergency cases. Neutralizing monoclonal antibodies (mAbs) have been demonstrated to be effective in the treatment of several infectious diseases as well as in preliminaryin vitroandin vivomodels of arbovirus-related infections. Given their specific antiviral activity as well-tolerated molecules with limited side effects, mAbs could represent a new therapeutic approach for the development of an effective treatment, as well as useful tools in the study of the host-virus interplay and in the development of more effective immunogens. However, before their use as candidate therapeutics, possible hurdles (e.g., Ab-dependent enhancement of infection, occurrence of viral escape variants) must be carefully evaluated. In this review are described the main arboviruses infecting humans and candidate mAbs to be possibly used in a future passive immunotherapy.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Luigi Margiotta-Casaluci ◽  
Stewart F. Owen ◽  
Belinda Huerta ◽  
Sara Rodríguez-Mozaz ◽  
Subramanian Kugathas ◽  
...  

Abstract The Adverse Outcome Pathway (AOP) framework represents a valuable conceptual tool to systematically integrate existing toxicological knowledge from a mechanistic perspective to facilitate predictions of chemical-induced effects across species. However, its application for decision-making requires the transition from qualitative to quantitative AOP (qAOP). Here we used a fish model and the synthetic glucocorticoid beclomethasone dipropionate (BDP) to investigate the role of chemical-specific properties, pharmacokinetics, and internal exposure dynamics in the development of qAOPs. We generated a qAOP network based on drug plasma concentrations and focused on immunodepression, skin androgenisation, disruption of gluconeogenesis and reproductive performance. We showed that internal exposure dynamics and chemical-specific properties influence the development of qAOPs and their predictive power. Comparing the effects of two different glucocorticoids, we highlight how relatively similar in vitro hazard-based indicators can lead to different in vivo risk. This discrepancy can be predicted by their different uptake potential, pharmacokinetic (PK) and pharmacodynamic (PD) profiles. We recommend that the development phase of qAOPs should include the application of species-specific uptake and physiologically-based PK/PD models. This integration will significantly enhance the predictive power, enabling a more accurate assessment of the risk and the reliable transferability of qAOPs across chemicals.


1990 ◽  
Vol 269 (3) ◽  
pp. 709-715 ◽  
Author(s):  
H Hayashi ◽  
M K Owada ◽  
S Sonobe ◽  
K Domae ◽  
T Yamanouchi ◽  
...  

Lipocortin I, a Ca2(+)-and phospholipid-binding protein without EF-hand structures, has many biological effects in vitro. Its actual role in vivo, however is unknown. We obtained and characterized five monoclonal antibodies to lipocortin I. Two of these monoclonal antibodies (L2 and L4-MAbs) reacted with the Ca(+)-bound form of lipocortin I, but not with the Ca2(+)-free form, both in vivo and in vitro. Lipocortin I required greater than or equal to 10 microM-Ca2+ to bind the two antibodies, and this Ca2+ requirement was not affected by phosphatidylserine. L2-MAb abolished the phospholipase A2 inhibitory activity of lipocortin I and inhibited its binding to Escherichia coli membranes and to phosphatidylserine in vitro. L4-MAb abolished the phospholipase A2 inhibitory activity of lipocortin I, but did not affect its binding to E. coli membranes or to phosphatidylserine. These findings indicated that the inhibition of phospholipase A2 by lipocortin I was not simply due to removal or capping of the substrates in E. coli membranes. Furthermore, an immunofluorescence study using L2-MAb showed the actual existence of Ca2(+)-bound form of lipocortin I in vivo.


Sign in / Sign up

Export Citation Format

Share Document