scholarly journals Demonstration of burst-promoting activity of recombinant human GM-CSF on circulating erythroid progenitors using an assay involving the delayed addition of erythropoietin

Blood ◽  
1985 ◽  
Vol 66 (6) ◽  
pp. 1479-1481 ◽  
Author(s):  
RE Donahue ◽  
SG Emerson ◽  
EA Wang ◽  
GG Wong ◽  
SC Clark ◽  
...  

Abstract We demonstrate through the use of an in vitro assay involving the delayed addition of erythropoietin that human recombinant GM-CSF, cloned from a mature T cell line, Mo, clearly has burst-promoting activity (BPA) on peripheral blood erythroid progenitors at picomolar concentrations. Delay for up to 72 hours of the addition of erythropoietin to semi-solid methylcellulose cultures of concentrated peripheral blood progenitors minimizes or eliminates BPA-independent erythroid colony formation with little loss of BPA-dependent erythroid colony formation. This assay will prove useful in accurately detecting sources of BPA.

Blood ◽  
1985 ◽  
Vol 66 (6) ◽  
pp. 1479-1481 ◽  
Author(s):  
RE Donahue ◽  
SG Emerson ◽  
EA Wang ◽  
GG Wong ◽  
SC Clark ◽  
...  

We demonstrate through the use of an in vitro assay involving the delayed addition of erythropoietin that human recombinant GM-CSF, cloned from a mature T cell line, Mo, clearly has burst-promoting activity (BPA) on peripheral blood erythroid progenitors at picomolar concentrations. Delay for up to 72 hours of the addition of erythropoietin to semi-solid methylcellulose cultures of concentrated peripheral blood progenitors minimizes or eliminates BPA-independent erythroid colony formation with little loss of BPA-dependent erythroid colony formation. This assay will prove useful in accurately detecting sources of BPA.


1985 ◽  
Vol 6 (3) ◽  
pp. 361-366 ◽  
Author(s):  
C. Jone ◽  
J.E. Trosko ◽  
C.F. Aylsworth ◽  
L. Parker ◽  
C.C. Chang

2021 ◽  
Vol 118 (35) ◽  
pp. e2102374118
Author(s):  
Jae Sung Ko ◽  
Dongjin Jeong ◽  
Jaemoon Koh ◽  
Hyeryeon Jung ◽  
Kyeong Cheon Jung ◽  
...  

ZAP-70 is required for the initiation of T cell receptor (TCR) signaling, and Ssu72 is a phosphatase that regulates RNA polymerase II activity in the nucleus. However, the mechanism by which ZAP-70 regulates the fine-tuning of TCR signaling remains elusive. Here, we found that Ssu72 contributed to the fine-tuning of TCR signaling by acting as tyrosine phosphatase for ZAP-70. Affinity purification–mass spectrometry and an in vitro assay demonstrated specific interaction between Ssu72 and ZAP-70 in T cells. Upon TCR stimulation, Ssu72-deficient T cells increased the phosphorylation of ZAP-70 and downstream molecules and exhibited hyperresponsiveness, which was restored by reducing ZAP-70 phosphorylation. In vitro assay demonstrated that recombinant Ssu72 reduced tyrosine phosphorylation of ZAP-70 via phosphatase activity. Cd4-CreSsu72fl/fl mice showed a defect in the thymic development of invariant natural killer T cells and reductions in CD4+ and CD8+ T cell numbers in the periphery but more CD44hiCD62Llo memory T cells and fewer CD44loCD62Lhi naïve T cells, compared with wild-type mice. Furthermore, Cd4-CreSsu72fl/fl mice developed spontaneous inflammation at 6 mo. In conclusion, Ssu72 phosphatase regulates the fine-tuning of TCR signaling by binding to ZAP-70 and regulating its tyrosine phosphorylation, thereby preventing spontaneous inflammation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4213-4213
Author(s):  
Nami Nogawa ◽  
Youichi Aizawa ◽  
Nobuyoshi Kosaka ◽  
Takako Ishida ◽  
Takashi Kato

Abstract Cross-species comparisons of hematopoietic systems will elucidate the conservation and diversity among species such as zebrafish, Xenopus, chick and mouse, which are not only of interest but different approaches would contribute to general hematology. To begin to understand their hematopoietic systems, particularly the whole animal-physiology, across non-mammalian vertebrates, we have focused on amphibian hematopoiesis. We tried to clarify the localization of definitive hematopoietic progenitors in adult Xenopus laevis, which is still to be determined. When Xenopus was induced acute hemolytic anemia by intraperitoneal phenylhydrazine (PHZ) administration, immature erythroblasts emerging in the circulation and notable increase in erythropoiesis within the liver were observed. We first screened putative hematopoietic tissues, liver, spleen, bone marrow and kidney, for erythroid progenitors using polyclonal antibodies to putative Xenopus erythropoietin receptor (xlEPOR) that we recently identified. MACS and FACS sorting and analysis revealed the existence of xlEPOR expressing cells in both liver and anemic peripheral blood. These xlEPOR positive cells were hemoglobin-positive with o-dianisidine staining, and had typical blastic morphology with high nucleus-to-cytoplasm ratio. We next developed and established an in vitro colony assay system to identify and score the hematopoietic progenitors retrospectively. The method enabled the identification and quantification of erythroid progenitors. Briefly, cells were prepared from liver, spleen, bone marrow and kidney followed by placing in semi-solid culture medium (α-MEM containing 0.8% methylcellulose, 20% FCS with appropriate hematopoietic stimulators), and cultured at 23°C with 5% CO2. The anemic serum exhibited the apparent erythropoietic stimulating activity toward the formation of remarkable number of colonies derived from anemic peripheral blood cells, resembling typical mammalian hematopoietic colony formation. Most of the colonies consisted of hemoglobin-expressing erythroids after two days culture, indicating that colony-forming units-erythroid (CFU-e) appeared in anemic blood. The normal and anemic liver also contained CFU-e, resulting in the formation of mixed and pure hematopoietic colonies. This also proved to be a useful in vitro assay system for identifying and quantifying various hematopoietic progenitors and activities of related cytokines. Figure shows the number of erythroid colonies derived from PHZ-induced anemic peripheral blood and liver stimulated with anemic serum. We furthermore examined spleen and bone marrow side-by-side, since amphibian hematopoietic system is known to unique as erythropoiesis, granulopoiesis, and thrombopoiesis occur at distinct organs. The results demonstrated the direct evidences of predominant contribution of adult liver to erythropoiesis rather than bone marrow or spleen. A new animal model developed here should provide new insights into the basis of hematopoietic regulations. Figure Figure


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4699-4699
Author(s):  
Shicheng Yang ◽  
Xiao Huang ◽  
Hongyan Lu ◽  
Amandeep Salhotra ◽  
Alexander Wendling ◽  
...  

Abstract Abstract 4699 Introduction: Umbilical cord blood cells (UCB) from allogeneic donors have been established as an alternative source for HSC transplantation in patients who lack suitably HLA matched bone marrow or peripheral blood stem cells from adult donors. Transplantation using 2 unit UCB has been shown to compensate the low engraftment and slow hematopoietic recovery resulting from 1 unit UCB transplantation in full stature adult patients. At present, there are no unit specific factors that reliably predicts for the “winning unit” in 2 unit UCB transplantation, e.g. cell viability, number of infused total nucleated cells, CD34+ or CD3+ cells, sex mismatch, ABO blood group, and degree of HLA mismatch. In vivo mouse models suggest that CD34 negative subsets play an important role. Among CD34 negative subsets, CD8 T subset accounts for approximately 34.0+/−23.3% of T lymphocytes from UCB. In bone marrow transplantation CD8 T cells have been found to facilitate donor hematopoietic cell engraftment. Moreover, it has been reported that 1 dominant unit coincides with a specific CD8 T cell response against the non-engrafted unit which was not observed from CD4 or NK cells. Methods: In this study, we used volunteer donated UCB research units (kindly provided by P. Rubinstein, MD, New York Blood Center). Mononuclear cells (MNC) were purified by Ficoll gradient centrifugation, and CD3 T cells were isolated with CD3 MicroBeads (Miltenyi Biotec; autoMACS). The purified CD3 (confirmed by FACS >95% purity) cells were labeled with CFSE and DDAO-SE. After labeling, the cells from two different donors were mixed in 96-well U-bottom plates for continued culture in 37 °C 5% CO2. The expansion from each labeled donor cells was evaluated using flow cytometry; the dead cells were gated out using propidium iodide, and the data was analyzed using FlowJo software. For proper T cells activation, we also compared different activation conditions using i.) anti-CD3/CD28 Beads, ii.) anti-CD3 antibody plus anti-CD28 antibody, and iii.) cytokine IL-2. The schematic illustration of methods is shown in Figure 1. Results and discussion: We noted that T cells from UCB are primarily at naïve stage as determined by CD45RA (93.8 +/− 7.11%) and CCR7 (84.9 +/− 12.0%) expression. We also determined the optimal activation condition using a modified mixed lymphocyte reaction from 2 UCB units. Four days after incubation, the proliferation from 2 units labeled with CFSE and DDAO-SE could be reproducibly distinguished using FL1 channel for CFSE and FL4 channel for DDAO-SE (Figure 1). The optimal concentration for labeling using CFSE (1 mM) and DDAO (1 μM or 3 mM) was determined by titration. To avoid cell toxicity resulting from CFSE and DDAO-SE labeling, as well as self-crossing from each donor using two dyes, we examined additional mixed lymphocyte analyses in which each donor was labeled with CFSE or DDAO-SE respectively and vice versa. As shown in Figure 1, we found consistently that the predicated dominant unit accounted for the majority of culture (73.2% stained with DDAO; 63.5% stained with CFSE) after 4 days co-culture. The dominance was not correlated with cell proliferation indicated by the proliferation index (1.12 for dominant and 1.48 for another unit). After confirmation of this in vitro assay, further studies were conducted to evaluate the IFN-γ release of 2 UCB units in this optimized mixed lymphocyte assay in the condition using cytokine IL-2. Interestingly, we could only detect IFN-γ by intracellular staining in one unit when co-culture was set-up using CD3 T cells from each unit; the expression of IFN-γ was not detected when we used CD3 T cells from 1 unit. The correlation between dominance and the expression of IFN-γ is currently under investigation. Conclusion: UCB Transplantation is an important alternative for patients lacking bone marrow or peripheral blood stem cell donors. With the establishment of this novel modified mixed lymphocyte in vitro assay for prediction of the “winning” immune dominant unit, routine analyses can be performed to guide unit selection. Further interventions can be exploited to preferentially treat the expected dominant unit with glycosylation, cytokines, prostaglandins, or C3a compliments to further enhance hematopoietic stem cells trafficking and engraftment to the marrow. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 5 (5) ◽  
pp. e83 ◽  
Author(s):  
Italia Grenga ◽  
Renee N Donahue ◽  
Lauren M Lepone ◽  
Jacob Richards ◽  
Jeffrey Schlom

Sign in / Sign up

Export Citation Format

Share Document