scholarly journals Thrombospondin inhibits adhesion of platelets to glass and protein- covered substrata

Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1096-1099 ◽  
Author(s):  
J Lahav

Abstract Glass and protein-covered surfaces when treated with the platelet- secreted glycoprotein thrombospondin lose their capacity to bind unstimulated platelets. In comparison to the number that bind to fibronectin-covered glass surfaces, less than 3% bind to thrombospondin- covered glass surfaces. When the fibronectin-covered surface is incubated with thrombospondin, it loses 87% of its binding capacity for platelets. The inhibitory effect of thrombospondin on platelet binding increases with increasing amounts of the adsorbed protein and reaches maximal values at 65% saturation of the adsorption of thrombospondin to the surface. Platelet spreading on the surface is also completely inhibited by thrombospondin. These data suggest that thrombospondin is nonthrombogenic and can modulate platelet adhesion to the subendothelium.

Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1096-1099 ◽  
Author(s):  
J Lahav

Glass and protein-covered surfaces when treated with the platelet- secreted glycoprotein thrombospondin lose their capacity to bind unstimulated platelets. In comparison to the number that bind to fibronectin-covered glass surfaces, less than 3% bind to thrombospondin- covered glass surfaces. When the fibronectin-covered surface is incubated with thrombospondin, it loses 87% of its binding capacity for platelets. The inhibitory effect of thrombospondin on platelet binding increases with increasing amounts of the adsorbed protein and reaches maximal values at 65% saturation of the adsorption of thrombospondin to the surface. Platelet spreading on the surface is also completely inhibited by thrombospondin. These data suggest that thrombospondin is nonthrombogenic and can modulate platelet adhesion to the subendothelium.


1979 ◽  
Author(s):  
J.A. Davies ◽  
V.C. Menys

Clinical trials of anti-platelet drugs have suggested that they may be useful in the prevention of thrombotic disease. While such drugs inhibit platelet function, those which act on cyclooxygenase also reduce PGI2 synthesis and may interfere with tne natural antithrombotic properties of the vessel wall. We studied the effects of SP, ASA and OP ex vivo on the platelet-vessel wall interaction. Rabbits were dosed by mouth with drug (at about twice the weight-adjusted human dose) or placebo for 5 days, then exsanguinated and aortas removed. Washed platelets prepared from the blood were labelled with 51Cr. and their adhesion to everted aortapr epared from treated or control rabbits was measured in a perfusion device. PGI2-like activity in aortic rings was assayed by its inhibitory effect on platelet aggregation to ADP. Adhesion of platelets to aort as from SP- treated rabbits was i ncreased (p < 0.025), PGI2 - like activity was partially inhibited, but over all adhesion of SP-treated platelets to aor tas f rom SP-treated animals reduced by 30% (p < 0.02). Adhesion to aortas of ASA- treated rabbits was sliahtly inc r ea=-.ed (p > 0 . 1) , PGI 2 - l ike act ivi ty abolished , and no overall reduc tion in platelet adhesion seen. DP had no effecton adhesion or PGI-like activity. These results support the evidence that cyclo-oxygenase inhibitors reduce the inherent resistance of the vessel wall to platelet adhesion. However with SP, inhibitory effects on platelets appear to be more important.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 1985-1988 ◽  
Author(s):  
F Fauvel-Lafeve ◽  
V Tabaka ◽  
JP Caen ◽  
YJ Legrand

Abstract Bernard-Soulier syndrome (BSS) platelets, which lack the membrane glycoprotein complex Ib-IX, do not adhere to subendothelium. The adhesion of platelets from two patients with BSS to subendothelial microfibrils (MFs) and type I collagen was compared in an in vitro assay adapted to patients with low platelet count. With both patients, platelet adhesion to MFs was strongly defective, whereas the adhesion to collagen was normal. The involvement of GPIb in the MFs-induced platelet adhesion was confirmed by the inhibitory effect of a MoAb (AN51) to the von Willebrand (vWF) factor binding domain of GPIb. The adhesion of platelets to MFs thus requires GPIb-IX and an axis MFs-vWF- GPIb-IX seems therefore to be prevalent in the reactivity of platelets with subendothelium.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 1985-1988
Author(s):  
F Fauvel-Lafeve ◽  
V Tabaka ◽  
JP Caen ◽  
YJ Legrand

Bernard-Soulier syndrome (BSS) platelets, which lack the membrane glycoprotein complex Ib-IX, do not adhere to subendothelium. The adhesion of platelets from two patients with BSS to subendothelial microfibrils (MFs) and type I collagen was compared in an in vitro assay adapted to patients with low platelet count. With both patients, platelet adhesion to MFs was strongly defective, whereas the adhesion to collagen was normal. The involvement of GPIb in the MFs-induced platelet adhesion was confirmed by the inhibitory effect of a MoAb (AN51) to the von Willebrand (vWF) factor binding domain of GPIb. The adhesion of platelets to MFs thus requires GPIb-IX and an axis MFs-vWF- GPIb-IX seems therefore to be prevalent in the reactivity of platelets with subendothelium.


1991 ◽  
Vol 65 (02) ◽  
pp. 202-205 ◽  
Author(s):  
Harvey J Weiss ◽  
Vincet T Turitto ◽  
Hans R Baumgartner

SummaryIn order to explore further the mechanism by which glycoprotein GPIIb-IIIa promotes platelet vessel wall interaction, platelet adhesion to subendothelium was studied in an annular chamber in which subendothelium from rabbit aorta was exposed at a shear rate of 2,600 s−1 to blood from patients with thrombasthenia. Perfusions were conducted for each of 5 exposure times (1 ,2,3, 5 and 10 min), and the percent surface coverage of the vessel segment with platelets in the contact (C) and spread (S) stage was determined. Increased values of platelet contact (C) were obtained in thrombasthenia at all exposure times; this finding is consistent with a defect in platelet spreadirg, based on a previously described kinetic model of platelet attachment to subendothelium. According to this model of attachment, increased values of platelet contact (C) at a single exposure time may be indicative of either a defect in spreading (S) or initial contact (C), but multiple exposures will result in increased contact only for defects which are related to defectiye platelet spreading (s).The results obtained over a broad range of exposure times provide more conclusive evidence that GPIIb-IIIa mediates platelet spreading than those previously obtained at single exposure times.


1988 ◽  
Vol 60 (01) ◽  
pp. 030-034 ◽  
Author(s):  
Eva Bastida ◽  
Juan Monteagudo ◽  
Antonio Ordinas ◽  
Luigi De Marco ◽  
Ricardo Castillo

SummaryNative von Willebrand factor (N-vWF) binds to platelets activated by thrombin, ADP or ristocetin. Asialo vWF (As-vWF) induces platelet aggregation in absence of platelet activators. N-vWF mediates platelet adhesion to vessel subendothelium at high shear rates. We have investigated the role of As-vWF in supporting platelet deposition to rabbit vessel subendothelium at a shear rate of 2,000 sec-1, using the Baumgartner perfusion system. We have studied the effects of the addition of As-vWF (from 2 to 12 μg/ml) to perfusates consisting of washed red blood cells, 4% human albumin and washed platelets. Our results show a significant increase in platelet deposition on subendothelium (p <0.01) in perfusions to which As-vWF had been added. Blockage of the platelet glycoproteins Ib and IIb/IIIa (GPIb and GPIIb/IIIa) by specific monoclonal antibodies (LJIb1 and LJCP8, respectively) resulted in a decrease of platelet deposition in both types of perfusates prepared with N-vWF and As-vWF. Our results indicate that As-vWF enhances platelet deposition to vessel subendothelium under flow conditions. Furthermore, they suggest that this effect is mediated by the binding of As-vWF to platelet membrane receptors, which in turn, promote platelet spreading and adhesion to the subendothelium.


1983 ◽  
Vol 49 (02) ◽  
pp. 096-101 ◽  
Author(s):  
V C Menys ◽  
J A Davies

SummaryPlatelet adhesion to rabbit aortic subendothelium or collagen-coated glass was quantitated in a rotating probe device by uptake of radio-labelled platelets. Under conditions in which aspirin had no effect, dazoxiben, a selective inhibitor of thromboxane synthetase, reduced platelet adhesion to aortic subendothelium by about 40% but did not affect adhesion to collagen-coated glass. Pre-treatment of aortic segments with 15-HPETE, a selective inhibitor of PGI2-synthetase, abolished the inhibitory effect of dazoxiben on adhesion. Concentrations of 6-oxo-PGFlα in the perfusate were raised in the presence of dazoxiben alone, and following addition of thrombin (10 units/ml) there was a 2-3 fold increase in concentration. Perfusion of damaged aorta with platelets labelled with (14C)-arachidonic acid in the presence of thrombin and dazoxiben resulted in the appearance of (14C)-labelled-6-oxo-PGFiα. Inhibition of thromboxane synthetase limits platelet adhesion probably by promoting vascular synthesis of PGI2 from endoperoxides liberated from adherent platelets, which subsequently promotes detachment of cells from the surface.


1986 ◽  
Vol 55 (01) ◽  
pp. 136-142 ◽  
Author(s):  
K J Kao ◽  
David M Shaut ◽  
Paul A Klein

SummaryThrombospondin (TSP) is a major platelet secretory glycoprotein. Earlier studies of various investigators demonstrated that TSP is the endogenous platelet lectin and is responsible for the hemagglutinating activity expressed on formaldehyde-fixed thrombin-treated platelets. The direct effect of highly purified TSP on thrombin-induced platelet aggregation was studied. It was observed that aggregation of gel-filtered platelets induced by low concentrations of thrombin (≤0.05 U/ml) was progressively inhibited by increasing concentrations of exogenous TSP (≥60 μg/ml). However, inhibition of platelet aggregation by TSP was not observed when higher than 0.1 U/ml thrombin was used to activate platelets. To exclude the possibility that TSP inhibits platelet aggregation by affecting thrombin activation of platelets, three different approaches were utilized. First, by using a chromogenic substrate assay it was shown that TSP does not inhibit the proteolytic activity of thrombin. Second, thromboxane B2 synthesis by thrombin-stimulated platelets was not affected by exogenous TSP. Finally, electron microscopy of thrombin-induced platelet aggregates showed that platelets were activated by thrombin regardless of the presence or absence of exogenous TSP. The results indicate that high concentrations of exogenous TSP (≥60 μg/ml) directly interfere with interplatelet recognition among thrombin-activated platelets. This inhibitory effect of TSP can be neutralized by anti-TSP Fab. In addition, anti-TSP Fab directly inhibits platelet aggregation induced by a low (0.02 U/ml) but not by a high (0.1 U/ml) concentration of thrombin. In conclusion, our findings demonstrate that TSP is functionally important for platelet aggregation induced by low (≤0.05 U/ml) but not high (≥0.1 U/ml) concentrations of thrombin. High concentrations of exogenous TSP may univalently saturate all its platelet binding sites consequently interfering with TSP-crosslinking of thrombin-activated platelets.


Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 2947-2957 ◽  
Author(s):  
V Evangelista ◽  
P Piccardoni ◽  
JG White ◽  
G de Gaetano ◽  
C Cerletti

Human PMN stimulated by fMLP are able to activate coincubated, autologous platelets. Cathepsin G, a neutral serine protease stored in the azurophilic granules of PMN, is the major platelet activator in this system. We previously proposed that shear-induced close PMN- platelet contact creates the conditions for which cathepsin G activity on platelets is protected against antiproteinases. The aim of this study was to investigate the adhesive mechanisms, possibly creating between PMN and platelet membranes the microenvironment in which cathepsin G, discharged from stimulated PMN onto adherent platelets, is protected against antiproteinases. Microscopic examination showed that under conditions of high shear, 71.3% +/- 6.1% of PMN were associated to platelets forming small clumps. This percentage decreased to 10% +/- 2% and 13% +/- 4%, respectively, in the presence of an inhibitory antibody to P-selectin or 20 mmol/L mannose-1-phosphate and to 10.8% +/- 3.7% when cells were not stirred. Similarly, PMN pretreatment with neuraminidase abolished PMN binding to platelets. These results indicate that P-selectin mediates PMN-platelet adhesion occurring before PMN stimulation. Prevention of PMN-platelet contact significantly potentiated the inhibitory effect of alpha 1-protease inhibitor on subsequent cathepsin G-induced platelet serotonin release. Because anti-P-selectin antibody, mannose-1-phosphate, and neuraminidase treatment of PMN did not modify PMN-induced platelet activation in the absence of antiproteinases, it is suggested that P- selectin-mediated PMN-platelet adhesion results in the formation of a sequestered microenvironment between cell membranes, in which higher amounts of antiproteinases are required to prevent the activity of released cathepsin G. These data add a new functional role to P- selectin-mediated PMN-platelet adhesion that could be important in vivo because of the presence of antiproteinases in plasma.


2020 ◽  
Author(s):  
Ehteramolsadat Hosseini ◽  
Saba Hojjati ◽  
Safoora Afzalniaye gashti ◽  
Mehran Ghasemzadeh

Abstract Background: Upon vascular damage, the exposed subendothelial matrix recruits circulating platelets to site of injury while inducing their firm adhesion mainly via GPVI-collagen interaction. GPVI also supports aggregatory and pro-coagulant functions in arterial shear rate even on the matrix other than collagen. Reactive oxygen species (ROS) modulate these stages of thrombosis; however augmented oxidant stress also disturbs platelet functions. Stored-dependent platelet lesion is associated with the increasing levels of ROS. Whether ROS accumulation is also relevant to collagen-dependent platelet dysfunction is the main interest of this study. Methods: Fresh PRP-PCs (platelet concentrates) were either stimulated with potent ROS-inducers PMA and CCCP or stored for 5 days. Intra-platelet superoxide (O2--) or mitochondrial-ROS and GPVI expression were detected by flowcytometery. GPVI shedding, platelet aggregation and spreading/adhesion to collagen were analyzed by western blot, aggregometry and fluorescence-microscopy respectively. Results: Mitochondrial-ROS levels in 5 days-stored PCs were comparable to those induced by mitochondrial uncoupler, CCCP while O2-- generations were higher than those achieved by PMA. Shedding levels in 5 days-stored PCs were higher than those induced by these potent stimuli. GPVI expressions were reduced comparably in CCCP treated and 5 days-stored PCs. Platelet adhesion was also diminished during storage while demonstrating significant reverse correlation with GPVI shedding. However, only firm adhesion (indicated by spreading or platelet adhesion surface area) was relevant to GPVI expression. Platelet adhesion and aggregation also showed reverse correlations with both O2-- and mitochondrial-ROS formations; nonetheless mitochondrial-ROS was only relevant to firm adhesion. Conclusion: As a sensitive indicator of platelet activation, GPVI shedding correlated with either simple adhesion or spreading to collagen, while GPVI expression was only relevant to platelet spreading. Thereby, if the aim of GPVI evaluation is to examine platelet firm adhesion, expression seems to be a more specific choice. Furthermore, the comparable levels of ROS generation in 5 days-stored PCs and CCCP treated platelets, indicated that these products are significantly affected by oxidative stress. Reverse correlation of accumulating ROS with collagen-dependent platelet dysfunction is also a striking sign of an oxidant-induced lesion that may raise serious question about the post-transfusion quality and competence of longer stored products.


Sign in / Sign up

Export Citation Format

Share Document