scholarly journals The effects of tumor necrosis factor-alpha on early human hematopoietic progenitor cells treated with 4-hydroperoxycyclophosphamide

Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 681-689 ◽  
Author(s):  
J Moreb ◽  
JR Zucali ◽  
S Rueth

Abstract We have previously reported that 20 hours' preincubation of human bone marrow cells with interleukin-1 beta (IL-1) can protect early progenitor cells from 4-hydroperoxycyclophosphamide (4-HC) cytotoxicity. Since tumor necrosis factor-alpha (TNF alpha) shares many of the biologic properties of IL-1, we have compared the protective effects of TNF alpha with IL-1 against 4-HC. Incubation of human bone marrow mononuclear cells or an enriched progenitor population for 20 hours with either TNF alpha or IL-1 resulted in the survival of an increased number of single- and mixed-lineage colonies, including replatable blast cell colonies, while only rare colonies were seen in the control group. Antibodies to TNF alpha completely abolished the protection observed with IL-1, while antibodies to IL-1 alpha and IL-1 beta decreased but did not abolish the protection seen with TNF alpha. Combinations of low doses of TNF alpha and IL-1 showed synergy in their protective effects. Furthermore, no protection was observed by IL-1, IL- 1 bone-marrow-conditioned medium (IL-1-BMCM), or TNF alpha for HL-60, K562, KG1, KG1a, and DU.528 leukemic-cell lines or primary acute myelogenous leukemic (AML) blast cells from the lethal effects of 4-HC. In the case of HL-60 and KG1a cell lines, TNF alpha preincubation resulted in increased cytotoxicity. Furthermore, preincubation of a mixture of AML cells and normal bone-marrow cells with IL-1 + TNF alpha before 4-HC resulted in the protection of normal but not leukemic progenitors. These results suggest that TNF alpha is necessary for the protection of normal, early, human hematopoietic progenitors from 4-HC, while IL-1 is not mandatory but will synergize with TNF alpha to offer increased protection. In addition, no protection from 4-HC is observed by TNF alpha, IL-1, or IL-1-BMCM for primary leukemic blast cells or leukemic cell lines.

Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 681-689
Author(s):  
J Moreb ◽  
JR Zucali ◽  
S Rueth

We have previously reported that 20 hours' preincubation of human bone marrow cells with interleukin-1 beta (IL-1) can protect early progenitor cells from 4-hydroperoxycyclophosphamide (4-HC) cytotoxicity. Since tumor necrosis factor-alpha (TNF alpha) shares many of the biologic properties of IL-1, we have compared the protective effects of TNF alpha with IL-1 against 4-HC. Incubation of human bone marrow mononuclear cells or an enriched progenitor population for 20 hours with either TNF alpha or IL-1 resulted in the survival of an increased number of single- and mixed-lineage colonies, including replatable blast cell colonies, while only rare colonies were seen in the control group. Antibodies to TNF alpha completely abolished the protection observed with IL-1, while antibodies to IL-1 alpha and IL-1 beta decreased but did not abolish the protection seen with TNF alpha. Combinations of low doses of TNF alpha and IL-1 showed synergy in their protective effects. Furthermore, no protection was observed by IL-1, IL- 1 bone-marrow-conditioned medium (IL-1-BMCM), or TNF alpha for HL-60, K562, KG1, KG1a, and DU.528 leukemic-cell lines or primary acute myelogenous leukemic (AML) blast cells from the lethal effects of 4-HC. In the case of HL-60 and KG1a cell lines, TNF alpha preincubation resulted in increased cytotoxicity. Furthermore, preincubation of a mixture of AML cells and normal bone-marrow cells with IL-1 + TNF alpha before 4-HC resulted in the protection of normal but not leukemic progenitors. These results suggest that TNF alpha is necessary for the protection of normal, early, human hematopoietic progenitors from 4-HC, while IL-1 is not mandatory but will synergize with TNF alpha to offer increased protection. In addition, no protection from 4-HC is observed by TNF alpha, IL-1, or IL-1-BMCM for primary leukemic blast cells or leukemic cell lines.


Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2401-2410 ◽  
Author(s):  
L Jia ◽  
SM Kelsey ◽  
MF Grahn ◽  
XR Jiang ◽  
AC Newland

The drug-resistant leukemic cell lines, CEM/VLB100 and K/DAU600, are more sensitive to tumor necrosis factor alpha (TNFalpha)-mediated cytotoxicity compared with their parental cell lines, CCRF-CEM and K562 cl.6. Drug-resistant leukemic cell lines have more active mitochondrial function, which is associated with a greater susceptibility to TNFalpha- induced respiratory inhibition. TNFalpha blocked electron transfer at three sites, NADH dehydrogenase (complex I), succinate dehydrogenase (complex II), and cytochrome c oxidase (complex IV). Respiratory rate and electron transport chain enzyme activities were significantly inhibited in the drug-resistant, TNF-sensitive cell lines. Respiratory inhibition preceded cell death by at least 5 to 8 hours. The respiratory failure was not compensated for by appropriate up- regulation of the glycolytic pathway. Increasing mitochondrial respiratory rate and enzyme activities by long-term culture with 2 mmol/L adenosine 5′-diphosphate (ADP) and Pi sensitized both drug- sensitive and drug-resistant cells to TNFalpha-induced cytolysis. Intramitochondrial free radicals generated by paraquat only had a limited and delayed effect on respiratory inhibition and cytolysis in comparison with the effect of TNFalpha. We conclude that TNFalpha- induced cytotoxicity in leukemic cells is, at least in part, mediated by inhibition of mitochondrial respiration. Free radical generation by TNFalpha may not directly lead to the observed inhibition of the mitochondrial electron transport and other mechanisms must be involved.


Blood ◽  
1985 ◽  
Vol 65 (4) ◽  
pp. 945-950
Author(s):  
TW LeBien ◽  
DE Stepan ◽  
RM Bartholomew ◽  
RC Stong ◽  
JM Anderson

We have previously used a chromium-release assay to demonstrate that the cocktail of monoclonal antibodies BA-1, BA-2, BA-3, and complement can effectively lyse human leukemic cells in the presence of excess bone marrow. Using a leukemic cell colony assay, we have reinvestigated the variables influencing lysis of human leukemic cells (KM-3, HPB- NULL, NALM-6) in bone marrow using BA-1, BA-2, BA-3, and complement. Specific variables addressed included the concentration of excess bone marrow cells, the number of treatments, the presence or absence of DNase during the treatment, the combination of antibodies, and the sensitivity of different leukemic cell lines to lysis. Using the colony assay, the BA-1,2,3 cocktail was shown to be more effective than any single antibody or combination of two antibodies. We also determined that the concentration of excess bone marrow cells and number of treatments had a direct bearing on leukemic cell lysis. Although two cycles of treatment were significantly superior to one cycle, three cycles were not significantly superior to two cycles. Inclusion of DNase (10 micrograms/mL) was a critical adjunct that eliminated clumping and facilitated plating cells in the colony assay. Finally, we could show that striking differences existed in the sensitivity of the leukemic cell lines to lysis with the BA-1,2,3 cocktail and complement. NALM-6 cells were the most sensitive (approximately four logs of kill), and KM-3 cells were the most resistant (less than two logs of kill). Our results strongly support the utility of sensitive leukemic cell colony assays in the analysis of marrow treatment variables in autologous bone marrow transplantation.


Blood ◽  
1985 ◽  
Vol 65 (4) ◽  
pp. 945-950 ◽  
Author(s):  
TW LeBien ◽  
DE Stepan ◽  
RM Bartholomew ◽  
RC Stong ◽  
JM Anderson

Abstract We have previously used a chromium-release assay to demonstrate that the cocktail of monoclonal antibodies BA-1, BA-2, BA-3, and complement can effectively lyse human leukemic cells in the presence of excess bone marrow. Using a leukemic cell colony assay, we have reinvestigated the variables influencing lysis of human leukemic cells (KM-3, HPB- NULL, NALM-6) in bone marrow using BA-1, BA-2, BA-3, and complement. Specific variables addressed included the concentration of excess bone marrow cells, the number of treatments, the presence or absence of DNase during the treatment, the combination of antibodies, and the sensitivity of different leukemic cell lines to lysis. Using the colony assay, the BA-1,2,3 cocktail was shown to be more effective than any single antibody or combination of two antibodies. We also determined that the concentration of excess bone marrow cells and number of treatments had a direct bearing on leukemic cell lysis. Although two cycles of treatment were significantly superior to one cycle, three cycles were not significantly superior to two cycles. Inclusion of DNase (10 micrograms/mL) was a critical adjunct that eliminated clumping and facilitated plating cells in the colony assay. Finally, we could show that striking differences existed in the sensitivity of the leukemic cell lines to lysis with the BA-1,2,3 cocktail and complement. NALM-6 cells were the most sensitive (approximately four logs of kill), and KM-3 cells were the most resistant (less than two logs of kill). Our results strongly support the utility of sensitive leukemic cell colony assays in the analysis of marrow treatment variables in autologous bone marrow transplantation.


Blood ◽  
1981 ◽  
Vol 57 (4) ◽  
pp. 794-797 ◽  
Author(s):  
T Tidwell ◽  
G Guzman ◽  
WR Vogler

Abstract The action of an alkyl-lysophospholipid (ALP), ET180CH3, on clonogenicity, 3H-TdR uptake, and cell numbers was tested in two human leukemic cell lines, HL60 and K562, and short-term human leukemic bone marrow cultures. ALP eliminated clonogenicity in HL60 but not in K562 cultures; 3H-TdR uptake and cell numbers were depressed at low concentrations of ET180CH3 in HL60, but not K562 cultures. The action of the lysophospholipid analog on human leukemic bone marrow short-term cultures at low concentrations was similar to its action on HL60 cultures; clonogenicity and 3H-TdR uptake were depressed, but cell numbers were not significantly affected. The demonstration of differential action of ALP on two cell lines should significantly simplify the investigation of the mechanism of the reported differential action of ET180CH3 on normal and leukemic cell membranes.


Blood ◽  
1991 ◽  
Vol 77 (9) ◽  
pp. 2079-2084 ◽  
Author(s):  
M Aihara ◽  
Y Aihara ◽  
G Schmidt-Wolf ◽  
I Schmidt-Wolf ◽  
BI Sikic ◽  
...  

Abstract Selective removal of malignant cells (purging) from bone marrow (BM) is a concern in autologous BM transplantation (ABMT). Use of vincristine, etoposide, or doxorubicin for purging could be rendered ineffective by the presence of multidrug-resistant (MDR) tumor cells. To circumvent this particular problem, we investigated whether 17F9, a monoclonal IgG2b antibody directed against the cell surface product of the MDR gene, P-glycoprotein, is effective in selective removal of MDR cells from BM when used with rabbit complement (C′). Using two different cell lines we have demonstrated that 17F9 + C′ selectively lyses MDR- positive cells. Three rounds of antibody + C′ resulted in 96.4% +/- 3.6% kill of K562/DOX and 100% +/- 0% of CEM/VLB cells. Mixtures of malignant cells and normal BM resulted in 99.85% removal of K562/DOX and 99.91% removal of CEM/VLB clonogenic cells. This treatment did not affect normal committed precursors compared with C′ alone. The addition of the cytotoxic agent etoposide (VP-16) following antibody purging results in a 4.6 log reduction of malignant cells. Furthermore, this antibody was effective when used against patients' leukemic blasts. These results suggest the use of 17F9 + C′ is effective and selective for removal of MDR cells from BM before ABMT and the addition of VP-16 enhances the purging efficacy.


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 100-106 ◽  
Author(s):  
HN Steinberg ◽  
AS Tsiftsoglou ◽  
SH Robinson

Abstract The human leukemic cell lines K562 and HL-60 were cocultured with normal bone marrow (BM) cells. Coculture with 10(4) K562 or HL-60 cells results in 50% inhibition of normal CFU-E and BFU-E colony formation. However, when the same number of K562 and HL-60 cells is first treated for two to five days with agents that induce their differentiation, a gradual loss in their capacity to inhibit CFU-E and BFU-E colony formation is observed. The inhibitory material in K562 cells is soluble and present in conditioned medium from cultures of these cells. The degree to which leukemic cell suppression of CFU-E and BFU-E growth is reversed is correlated with the time of exposure to the inducing agent. Suppression is no longer evident after five days of prior treatment with inducers. In fact, up to a 90% stimulation of CFU-E growth is observed in cocultures with K562 cells that have been pretreated with 30 to 70 mumol/L hemin for five days. K562 cells treated with concentrations of hemin as low as 30 mumol/L demonstrate increased hemoglobin synthesis and grow normally, but no longer have an inhibitory effect on CFU-E growth. Hence, reversal of normal BM growth inhibition must be caused by the more differentiated state of the K562 cells and not by a decrease in the number of these cells with treatment. Thus, induction of differentiation in cultured leukemic cells not only alters the malignant cell phenotype but also permits improved growth of accompanying normal marrow progenitor cells. Both are desired effects of chemotherapy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 924-924 ◽  
Author(s):  
Anna Wojtuszkiewicz ◽  
Yehuda G Assaraf ◽  
Gerrit Jansen ◽  
Kazunori Koide ◽  
Robert K. Bressin ◽  
...  

Abstract Introduction The process of pre-mRNA splicing is gaining attention as a contributor to anticancer drug resistance and as a promising novel therapeutic target. Splicing of many genes involved in regulation of apoptosis was found to be altered in tumor cells leading to chemoresistance. Similarly, aberrant splicing of genes engaged in drug metabolism was reported to mediate resistance to several anchor drugs of chemotherapeutic protocols in the treatment of leukemia including daunorubicin, cytarabine and methotrexate. Therefore, targeting the spliceosome holds potential to directly activate apoptosis by inducing pro-apoptotic splicing profiles as well as to sensitize cells displaying drug resistance related to altered splicing of genes involved in drug metabolism. In this respect, meayamycin B (MAMB) is a novel compound, which potently inhibits the SF3B1 subunit, which is one of the core components of the spliceosome complex. MAMB was previously shown to induce shifts in splicing of one of the essential apoptosis regulators Mcl-1 in non-small cell lung cancer cell lines A549 and H1299, hence promoting expression of its pro-apoptotic isoform Mcl-1S. The resulting dominance of Mcl-1S was able to sensitize these tumor cells to Bcl-XL inhibitor leading to induction of cell death. Here we evaluated the in vitro impact of MAMB as a single drug in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Methods To achieve this goal, we first assessed the impact of MAMB in short-term exposure on splicing of selected apoptosis-related genes, in particular Mcl-1, and concomitant induction of apoptosis in 3 human ALL and 3 AML cell lines. In addition, MAMB sensitivity was assessed using a 72h MTT assay in a panel of ALL and AML cell lines including sublines displaying resistance to several conventional chemotherapeutics including methotrexate, bortezomib or imatinib. Finally, we assessed MAMB sensitivity in primary ALL and AML samples, as compared to healthy bone marrow specimens. Results As previously shown in solid tumors, MAMB (0.5-1nM) was able to shift splicing of Mcl-1 but not Bcl-X in leukemic cell lines upon 24h exposure. The observed changes in splicing coincided with enhanced apoptosis as determined by flow cytometry. The fraction of apoptotic cells reached approximately 40% in the parental CCRF-CEM cell line (T-ALL) and 10% in the methotrexate-resistant subline which has lost folylpolyglutamate synthetase (FPGS) activity. Intriguingly, we previously found impaired splicing of FPGS in this methotrexate-resistant cell line as compared to intact splicing in parental cells. It should be emphasized that intact FPGS splicing is a key component of intracellular retention and activity of MTX. Induction of apoptosis in AML cell lines ranged between 17% in OCI-AML3 and 53% in KG1a. When MAMB sensitivity was assessed in the 72h MTT assay, the growth of both ALL and AML cell lines was efficiently inhibited with remarkable IC50 values varying between 0.07 and 0.16 nM. Intriguingly, even tumor cell lines which are resistant to conventional chemotherapeutics with different mechanisms of action, such as methotrexate, imatinib and bortezomib, were highly sensitive to MAMB. In line with our results with leukemic cell lines, both ALL and AML primary samples showed a remarkable sensitivity to MAMB (mean LC50 value 0.42 and 0.43 nM, respectively, Figure 1). The normal bone marrow cells obtained from healthy children showed a slightly higher resistance (mean LC50 value 0.57, p=0.03, Figure). Conclusions Our results show that MAMB itself may constitute a therapeutic option for patients displaying drug resistance to conventional chemotherapy, especially in AML, which in general tends to be more resistant to current treatment options compared to ALL. In addition, as a splicing modulating agent it may also be used to reverse aberrant splicing profiles of genes involved in drug metabolism, thereby restoring sensitivity to standard chemotherapeutics. This novel paradigm warrants further exploration using drug combination studies. Further investigation in a larger cohort of leukemia patient samples is warranted. Moreover, mice studies will be performed to reveal possible toxicities and in vivo efficacy. Figure 1 MAMB sensitivity in primary pediatric ALL and AML samples. Figure 1. MAMB sensitivity in primary pediatric ALL and AML samples. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document