scholarly journals Receptors for tumor necrosis factor on neoplastic B cells from chronic lymphocytic leukemia are expressed in vitro but not in vivo

Blood ◽  
1990 ◽  
Vol 76 (8) ◽  
pp. 1607-1613
Author(s):  
W Digel ◽  
W Schoniger ◽  
M Stefanic ◽  
H Janssen ◽  
C Buck ◽  
...  

Recombinant tumor necrosis factor-alpha (TNF-alpha) is a cytokine that induces proliferation of neoplastic B cells from patients with chronic lymphocytic leukemia (CLL). To gain insight into the mechanisms involved in regulating TNF responsiveness, we have examined TNF receptor expression on neoplastic B-CLL cells. We have demonstrated that freshly isolated neoplastic B cells from patients with CLL did not express TNF receptors. After 1 day of incubation in culture medium, TNF receptors were detectable in the range of 540 to 1,500/cell. Kinetic experiments revealed that receptor expression was half-maximal after 3 hours of culturing and required de novo protein synthesis. The Scatchard plots of TNF-alpha binding indicated a single set of high- affinity TNF receptors with a dissociation constant of 70 pmol/L. TNF receptor expression in vitro was found in all examined cases. All cytokines tested, with the exception of IL-2, did not influence the expression of TNF receptors. The TNF receptor expression is enhanced in B-CLL cells cultured in the presence of interleukin-2 when compared with the receptor expression of cells cultured in medium alone. Our data suggest that neoplastic B-CLL cells in patients with stable disease do not express TNF receptors in vivo and that an unknown mechanism suppressing TNF receptor expression in vivo may play a role in growth regulation of neoplastic B cells.

Blood ◽  
1990 ◽  
Vol 76 (8) ◽  
pp. 1607-1613 ◽  
Author(s):  
W Digel ◽  
W Schoniger ◽  
M Stefanic ◽  
H Janssen ◽  
C Buck ◽  
...  

Abstract Recombinant tumor necrosis factor-alpha (TNF-alpha) is a cytokine that induces proliferation of neoplastic B cells from patients with chronic lymphocytic leukemia (CLL). To gain insight into the mechanisms involved in regulating TNF responsiveness, we have examined TNF receptor expression on neoplastic B-CLL cells. We have demonstrated that freshly isolated neoplastic B cells from patients with CLL did not express TNF receptors. After 1 day of incubation in culture medium, TNF receptors were detectable in the range of 540 to 1,500/cell. Kinetic experiments revealed that receptor expression was half-maximal after 3 hours of culturing and required de novo protein synthesis. The Scatchard plots of TNF-alpha binding indicated a single set of high- affinity TNF receptors with a dissociation constant of 70 pmol/L. TNF receptor expression in vitro was found in all examined cases. All cytokines tested, with the exception of IL-2, did not influence the expression of TNF receptors. The TNF receptor expression is enhanced in B-CLL cells cultured in the presence of interleukin-2 when compared with the receptor expression of cells cultured in medium alone. Our data suggest that neoplastic B-CLL cells in patients with stable disease do not express TNF receptors in vivo and that an unknown mechanism suppressing TNF receptor expression in vivo may play a role in growth regulation of neoplastic B cells.


Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2252-2258 ◽  
Author(s):  
Pascale E.P. Dekkers ◽  
Fanny N. Lauw ◽  
Tessa ten Hove ◽  
Anje A. te Velde ◽  
Philip Lumley ◽  
...  

Tumor necrosis factor- (TNF-) is released from the cell surface by cleavage of pro–TNF- by metalloproteinases (MPs). In cell cultures, inhibition of MPs has been found not only to reduce the release of TNF-, but also to enhance the surface expression of TNF- and TNF- receptors, which might lead to a proinflammatory effect. To determine the effect of MP inhibition during inflammation in humans, 7 healthy subjects were studied after intravenous injection of lipopolysaccharide (LPS; 4 ng/kg) preceded (−20 minutes) by an oral dose of the MP inhibitor GI5402 (100 mg) or matching placebo. GI5402 strongly reduced LPS-induced TNF- release (P < .001), but did not influence the increase in monocyte-bound TNF-. In addition, GI5402 attenuated the rise in plasma-soluble TNF- receptors types I and II after LPS injection (both P < .001), but did not change the LPS-induced decreases in granulocyte and monocyte TNF- receptor expression. These data suggest that MP inhibitors may be useful as a treatment modality in diseases in which excessive production of TNF- is considered to play an important role. Furthermore, unlike in vitro, no evidence has been found in vivo with MP inhibition for a potential proinflammatory effect due to increases in membrane-bound TNF- and TNF- receptor number.


1994 ◽  
Vol 179 (4) ◽  
pp. 1185-1191 ◽  
Author(s):  
K J Van Zee ◽  
S A Stackpole ◽  
W J Montegut ◽  
M A Rogy ◽  
S E Calvano ◽  
...  

A number of recent studies have demonstrated that cellular responses to tumor necrosis factor (TNF) mediated by the p55 and the p75 TNF receptors are distinct. To evaluate the relative in vivo toxicities of wild-type TNF alpha (wtTNF alpha) and a novel p55 TNF selective receptor agonist, healthy, anesthetized baboons (Papio sp.) were infused with a near-lethal dose of either wtTNF alpha or a TNF alpha double mutant (dmTNF alpha) that binds specifically to the p55, but not to the p75, TNF receptor. Both wtTNF alpha and dmTNF alpha produced comparable acute hypotension, tachycardia, increased plasma lactate, and organ dysfunction in Papio. However, administration of wtTNF alpha produced a marked granulocytosis and loss of granulocyte TNF receptors, whereas little if any changes in neutrophil number or cell surface TNF receptor density were seen after dmTNF alpha mutant administration. Infusion of dmTNF alpha resulted in a plasma endogenous TNF alpha response that peaked after 90-120 min. We conclude that selective p55 TNF receptor activation is associated with early hemodynamic changes and the autocrine release of endogenous TNF alpha. Significant systemic toxicity results from p55 TNF receptor activation, but the role of the p75 TNF receptor in systemic TNF toxicity requires further study.


1994 ◽  
Vol 266 (6) ◽  
pp. H2535-H2541 ◽  
Author(s):  
P. Wang ◽  
Z. F. Ba ◽  
I. H. Chaudry

Although depressed endothelium-dependent relaxation occurs during early sepsis, the precise mechanism responsible for this remains unknown. Because the elevated levels of plasma tumor necrosis factor (TNF) play a major role in the pathophysiology of sepsis, we investigated whether TNF-alpha administration alters endothelium-dependent relaxation. To study this, recombinant TNF-alpha (1.2 x 10(7) U/mg) was infused intravenously (0.25 mg/kg body wt) for 0.5 h in normal rats, and mean arterial pressure was monitored. At 1 h after the completion of TNF-alpha or vehicle infusion, the aorta and a pulmonary artery were isolated, cut into 2.5-mm rings, and placed in organ chambers. Norepinephrine (2 x 10(-7) M) was applied to achieve near-maximal contraction, and dose responses for an endothelium-dependent vasodilator, acetylcholine, and an endothelium-independent vasodilator, nitroglycerine, were determined. In additional studies, aortic rings from normal animals were incubated with TNF-alpha for 2 h in vitro, and vascular reactivity was determined. The results indicate that TNF-alpha administration significantly reduced acetylcholine-induced vascular relaxation both in vivo and in vitro. Such a reduction was sustained at least 80 min after the completion of 2-h incubation with TNF-alpha. In contrast, TNF did not alter nitroglycerine-induced vascular relaxation. Thus TNF-alpha depresses endothelium-dependent relaxation in vitro as well as in vivo. Because TNF-alpha infusion increases plasma TNF levels without decreasing mean arterial pressure, the depressed endothelium-dependent relaxation observed during early sepsis may be due to the elevated circulating levels of TNF.


Blood ◽  
1994 ◽  
Vol 83 (5) ◽  
pp. 1216-1225 ◽  
Author(s):  
F Rosselli ◽  
J Sanceau ◽  
E Gluckman ◽  
J Wietzerbin ◽  
E Moustacchi

Abstract We have previously shown an unbalanced cytokine production in Fanconi anemia (FA) cells, ie, an underproduction of interleukin 6 (IL-6) during growth. Among a number of cytokines analyzed, the only other anomalies detected concern tumor necrosis factor alpha (TNF alpha). In comparison to normal cells, this cytokine is overproduced by FA lymphoblasts from the four genetic complementation groups. Indeed, up to an eight-fold increase in TNF alpha is observed in the growth medium of FA cells. Moreover, addition of anti-TNF alpha antibodies partially corrects the FA hypersensitivity to treatment by mitomycin C (MMC). Treatment of FA cells with IL-6, which partially restored an almost normal sensitivity to MMC of FA cells also reduces the TNF alpha overproduction in FA lymphoblasts. No anomalies at the molecular level (Southern and Northern blot analyses) are detected for the TNF alpha gene and its mRNA. We have investigated the in vivo situation by assaying TNF alpha levels in the serum from FA homozygotes and obligate heterozygotes. In contrast to normal healthy donors or to aplastic anemia patients in whom serum TNF alpha is present only in trace amounts, all 36 FA patients and 21 FA parents monitored show a significantly (P < .001) higher level of serum TNF alpha activity. Consequently, abnormal TNF alpha production seems to be associated with the FA genetic background.


Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4249-4256 ◽  
Author(s):  
L Trentin ◽  
R Zambello ◽  
C Agostini ◽  
C Enthammer ◽  
A Cerutti ◽  
...  

Leukemic cells from patients with B-cell chronic lymphocytic leukemia (B-CLL) express tumor necrosis factor (TNF) and interleukin-2 (IL-2) receptors, but only a low proliferative response can be elicited in vitro by TNF alpha and IL-2. To investigate the functional properties of IL-2 and TNF alpha on leukemic B cells, we evaluated (1) the regulation of expression of TNF receptors (TNF-R) and IL-2 receptors on leukemic B cells after culture with TNF alpha and IL-2; (2) the effect of the combination of TNF alpha and IL-2 in a proliferative in vitro assay; and (3) the expression and regulation by these cytokines of receptors for hematopoietic factors, including IL-3, granulocyte colony- stimulating factor (G-CSF), and granulocyte-macrophage colony- stimulating factor (GM-CSF). Flow cytometry analysis showed that freshly isolated leukemic cells from B-CLL patients bear the 75-kD TNF- R and the 55-kD IL-2R; TNF alpha was able to upregulate the 55-kD IL-2R but not the 75-kD TNF-R. On the other hand, IL-2 was not able to modify the expression of the above-mentioned receptors. Although each cytokine alone was unable to induce a relevant proliferation of leukemic cells, a synergistic proliferative effect was detected when these cytokines were used in combination. Leukemic B cells from B-CLL patients bear receptors for hematopoietic factors (IL-3, G-CSF, and GM-CSF) that were upregulated in vitro by IL-2 via the 55-kD IL-2R. On the contrary, TNF alpha was unable to affect the expression of the above-mentioned receptors. These results indicate (1) that IL-2 and TNF receptors are related to each other on leukemic cells in B-CLL and (2) that the IL-2R is involved in the regulation of other structures, ie, CSF receptors, thus pointing to another functional role of this receptor complex and the related cytokine in leukemic cells.


Blood ◽  
1989 ◽  
Vol 73 (5) ◽  
pp. 1242-1246 ◽  
Author(s):  
W Digel ◽  
M Stefanic ◽  
W Schoniger ◽  
C Buck ◽  
A Raghavachar ◽  
...  

Abstract The biologic effects of recombinant tumor necrosis factor-alpha (rTNF- alpha) and the expression of specific TNF membrane receptors on isolated neoplastic B cells from previously untreated patients with chronic lymphocytic leukemia (CLL) were investigated in vitro. Isolated B cells were incubated up to six days with various concentrations of rTNF-alpha (0.1 to 100 ng/mL). B cells from most patients proliferated ranged from two to 104 times that of unstimulated cells from the same patients. An optimal proliferative effect was achieved at 25 ng/mL rTNF- alpha and an incubation time between 96 and 120 hours, whereas a low concentration of rTNF-alpha (1 ng/mL) reduced [3H]TdR incorporation in four cases. Metaphase cells were detected in the rTNF-alpha-stimulated cultures that proliferated in response to rTNF-alpha. B cells from three of ten patients proliferated spontaneously and proliferation was further enhanced in two patients by rTNF-alpha. TNF binding assays gave a value of approximately 390 to 1,400 binding sites/cell for TNF and a dissociation constant (kd) of approximately 60 pmol/L. These data indicate that rTNF-alpha, in contrast to its cytotoxic/cytostatic effects, can also induce proliferation of tumor cells.


Blood ◽  
1992 ◽  
Vol 80 (7) ◽  
pp. 1798-1803 ◽  
Author(s):  
R Delwel ◽  
C van Buitenen ◽  
B Lowenberg ◽  
I Touw

Abstract Tumor necrosis factor (TNF)-alpha and TNF-beta have multiple effects on human acute myeloid leukemia (AML) cells in vitro, including (1) synergistic stimulation of proliferation with interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) and upregulation of interleukin-3 (IL-3) and GM-CSF receptors; (2) inhibition of granulocyte-CSF (G-CSF)-induced growth and rapid downmodulation of G-CSF receptors; and (3) induction of autocrine growth. Recently, two distinct TNF receptors (TNF-Rs), TNF-R(p55) and TNF-R(p75), have been identified. In this study, we show that both receptor types may be expressed by AML blasts. It has been investigated whether the different effects of TNF on AML blasts can be explained by differential activation of the distinct TNF-R structures. For this purpose, we used the monoclonal antibodies HTR-1 and HTR-9, specifically recognizing TNF-R(p55), and UTR-1, specific for TNF- R(p75). TNF-(alpha and -beta) mediated synergistic activation with IL- 3/GM-CSF, upregulation of IL-3/GM-CSF receptors, inhibition of G-CSF- induced growth, and rapid downmodulation of G-CSF receptors exclusively result from activation of TNF-R(p55). In certain cases in which TNF- alpha, rather than TNF-beta, induces AML growth through an autocrine mechanism, both TNF-R(p55) and (p75) are involved. These data indicate that the variety of TNF responses observed in AML can only be partially explained by differential activation of the TNF-R(p55) and (p75) structures, and that TNF-R(p55) on AML blasts can transduce both positive (synergism with IL-3/GM-CSF) and negative regulatory signals (inhibition of G-CSF-induced proliferation) following TNF activation.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 752-758 ◽  
Author(s):  
L Trentin ◽  
R Zambello ◽  
C Agostini ◽  
F Siviero ◽  
F Adami ◽  
...  

Abstract Two receptors for tumor necrosis factor (TNF) with different molecular weight (75-Kd and 55-Kd) and binding affinity have been recently discovered. To investigate the distribution and the functional role of these receptors on leukemic B cells from hairy cell leukemia (HCL) and B-cell chronic lymphocytic leukemia (B-CLL) patients, we evaluated: (1) the cytofluorimetric pattern of uncultured and cultured leukemic B cells incubated with utr-1 and htr-9 monoclonal antibodies (MoAbs), which specifically recognize the 75-Kd and 55-Kd TNF receptors (TNFR), respectively; (2) the effect of TNF-alpha and TNF-beta on leukemic B cells in an in vitro proliferation assay; (3) the role of anti-TNFR MoAbs on TNF-alpha and TNF-beta-driven B-cell growth; and (4) the proliferative effect of utr-1 and htr-9 MoAbs on in vitro cultured leukemic cells. Our study shows that the high affinity (75-Kd) but not the low affinity (55-Kd) TNFR molecules are expressed on freshly isolated leukemic B cells recovered from HCL and B-CLL patients. The expression of these receptors was neither upregulated nor downregulated by different stimuli, including TNF-alpha, TNF-beta, B-cell growth factor, and interleukin-2. TNF-alpha efficiently triggers the proliferation of HC and, to a lesser extent, the growth of B-CLL cells. TNF-beta was also able to transduce the proliferative signal in HCL, but not in B-CLL patients. TNF-alpha- and TNF-beta-driven B-cell proliferation was inhibited by the preincubation of leukemic B cells with utr-1 but not htr-9 MoAb. Moreover, anti-75-Kd, but not anti-55-Kd TNFR MoAb, was able to trigger the proliferation of leukemic B cells, and in particular of HC. These results show that leukemic B cells from patients with HCL and B-CLL are equipped with a fully functional high affinity TNFR.


1988 ◽  
Vol 168 (2) ◽  
pp. 789-794 ◽  
Author(s):  
D B Magilavy ◽  
J L Rothstein

We report that freshly isolated, unstimulated Kupffer cells (KC) from MRL/lpr female mice in short-term culture spontaneously produce high levels of TNF-alpha. TNF production was first detected in KC cultures at age 6 wk and increased with the age of the mice. Moreover, the levels of spontaneous TNF production by KC directly correlated with the age of the MRL/lpr mice. Although TNF production by KC could be induced with C. parvum in vivo or LPS in vitro in all nonautoimmune C3H/HeN, BALB/c, DBA/2, C57B16 mice, the only other strain in which spontaneous TNF production by KC was observed was MRL/++ mice greater than 10 mo old.


Sign in / Sign up

Export Citation Format

Share Document