scholarly journals Retroviral transformation of cerebral microvascular endothelial cells: macrophage-like and microvascular endothelial cell properties

Blood ◽  
1991 ◽  
Vol 77 (2) ◽  
pp. 294-305 ◽  
Author(s):  
DH Robinson ◽  
MK Warren ◽  
LT Liang ◽  
JJ Oprandy ◽  
TB Nielsen ◽  
...  

Abstract We report that L-cell-conditioned medium (LCM) transforms porcine cerebral microvascular (PCMV) endothelial cells into cells with macrophage-like properties. LCM is known to contain both cytokine(s) and the L-cell virus, a murine retrovirus found in the L929 cell and LCM. Our evidence suggests that both LCM cytokine(s) and the L-cell virus are involved in this PCMV endothelial cell transformation. Criteria for transformation include focus formation, decreased serum requirements for growth, changes in morphology including nonadherence, propagation in suspension culture, and a decreased growth response to stimulation with a known endothelial cell mitogen. Macrophage-like characteristics of this transformed cell, designated as RVTE, include pinocytosis of low-density lipoprotein, Fc receptor-mediated phagocytosis, phagocytosis of bacteria and zymosan, the expression of macrophage enzyme markers, and constitutive production of colony- stimulating factor 1. However, the transformed cell retains several properties of the nontransformed cell including the expression of FVIII:RAg and in vitro self-organization into capillary-like structures. Cloning of RVTE cells clearly shows that both macrophage- like and cerebral microvascular endothelial cell properties are present in the same cell. During self-organization, nontransformed cells express morphologic and functional characteristics classically associated with the macrophage. These findings suggest that some brain capillary pathophysiologies could involve macrophage-like cerebral microvascular endothelial cells. Furthermore, the “reticuloendothelial” phenotypic repertoire expressed by this transformed cerebral microvascular endothelial cell may show that the cerebral capillary endothelial cell in vivo is derived from a hematopoietic and/or phagocytic precursor.

Blood ◽  
1991 ◽  
Vol 77 (2) ◽  
pp. 294-305
Author(s):  
DH Robinson ◽  
MK Warren ◽  
LT Liang ◽  
JJ Oprandy ◽  
TB Nielsen ◽  
...  

We report that L-cell-conditioned medium (LCM) transforms porcine cerebral microvascular (PCMV) endothelial cells into cells with macrophage-like properties. LCM is known to contain both cytokine(s) and the L-cell virus, a murine retrovirus found in the L929 cell and LCM. Our evidence suggests that both LCM cytokine(s) and the L-cell virus are involved in this PCMV endothelial cell transformation. Criteria for transformation include focus formation, decreased serum requirements for growth, changes in morphology including nonadherence, propagation in suspension culture, and a decreased growth response to stimulation with a known endothelial cell mitogen. Macrophage-like characteristics of this transformed cell, designated as RVTE, include pinocytosis of low-density lipoprotein, Fc receptor-mediated phagocytosis, phagocytosis of bacteria and zymosan, the expression of macrophage enzyme markers, and constitutive production of colony- stimulating factor 1. However, the transformed cell retains several properties of the nontransformed cell including the expression of FVIII:RAg and in vitro self-organization into capillary-like structures. Cloning of RVTE cells clearly shows that both macrophage- like and cerebral microvascular endothelial cell properties are present in the same cell. During self-organization, nontransformed cells express morphologic and functional characteristics classically associated with the macrophage. These findings suggest that some brain capillary pathophysiologies could involve macrophage-like cerebral microvascular endothelial cells. Furthermore, the “reticuloendothelial” phenotypic repertoire expressed by this transformed cerebral microvascular endothelial cell may show that the cerebral capillary endothelial cell in vivo is derived from a hematopoietic and/or phagocytic precursor.


2019 ◽  
Vol 20 (20) ◽  
pp. 5227 ◽  
Author(s):  
Anjana Ajikumar ◽  
Merete B. Long ◽  
Paul R. Heath ◽  
Stephen B. Wharton ◽  
Paul G. Ince ◽  
...  

The blood-brain barrier (BBB), composed of brain microvascular endothelial cells (BMEC) that are tightly linked by tight junction (TJ) proteins, restricts the movement of molecules between the periphery and the central nervous system. Elevated systemic levels of neutrophils have been detected in patients with altered BBB function, but the role of neutrophils in BMEC dysfunction is unknown. Neutrophils are key players of the immune response and, when activated, produce neutrophil-derived microvesicles (NMV). NMV have been shown to impact the integrity of endothelial cells throughout the body and we hypothesize that NMV released from circulating neutrophils interact with BMEC and induce endothelial cell dysfunction. Therefore, the current study investigated the interaction of NMV with human BMEC and determined whether they altered gene expression and function in vitro. Using flow cytometry and confocal imaging, NMV were shown to be internalized by the human cerebral microvascular endothelial cell line hCMEC/D3 via a variety of energy-dependent mechanisms, including endocytosis and macropinocytosis. The internalization of NMV significantly altered the transcriptomic profile of hCMEC/D3, specifically inducing the dysregulation of genes associated with TJ, ubiquitin-mediated proteolysis and vesicular transport. Functional studies confirmed NMV significantly increased permeability and decreased the transendothelial electrical resistance (TEER) of a confluent monolayer of hCMEC/D3. These findings indicate that NMV interact with and affect gene expression of BMEC as well as impacting their integrity. We conclude that NMV may play an important role in modulating the permeability of BBB during an infection.


1993 ◽  
Vol 264 (2) ◽  
pp. H639-H652 ◽  
Author(s):  
M. Nishida ◽  
W. W. Carley ◽  
M. E. Gerritsen ◽  
O. Ellingsen ◽  
R. A. Kelly ◽  
...  

Although reciprocal intercellular signaling may occur between endocardial or microvascular endothelium and cardiac myocytes, suitable in vitro models have not been well characterized. In this report, we describe the isolation and primary culture of cardiac microvascular endothelial cells (CMEC) from both adult rat and human ventricular tissue. Differential uptake of fluorescently labeled acetylated low-density lipoprotein (Ac-LDL) indicated that primary isolates of rat CMEC were quite homogeneous, unlike primary isolates of human ventricular tissue, which required cell sorting based on Ac-LDL uptake to create endothelial cell-enriched primary cultures. The endothelial phenotype of both primary isolates and postsort subcultured CMEC and their microvascular origin were determined by characteristic histochemical staining for a number of endothelial cell-specific markers, by the absence of cells with fibroblast or pericyte-specific cell surface antigens, and by rapid tube formation on purified basement membrane preparations. Importantly, [3H]-thymidine uptake was increased 2.3-fold in subconfluent rat microvascular endothelial cells 3 days after coculture with adult rat ventricular myocytes because of release of an endothelial cell mitogen(s) into the extracellular matrix, resulting in a 68% increase in cell number compared with CMEC in monoculture. Thus biologically relevant cell-to-cell interactions can be modeled with this in vitro system.


Microbiology ◽  
2003 ◽  
Vol 149 (9) ◽  
pp. 2609-2614 ◽  
Author(s):  
Tomoaki Yoshida ◽  
Tsuyoshi Sugiyama ◽  
Naoki Koide ◽  
Isamu Mori ◽  
Takashi Yokochi

Shiga toxins (Stxs) produced by enterohaemorrhagic Escherichia coli or Shigella dysenteriae damage human endothelial cells predominantly in cooperation with pro-inflammatory cytokines, such as TNF-α. However, in this study, in vitro IFN-γ pre-treatment resulted in human lung microvascular endothelial cells becoming over 10 000-fold less sensitive to Stxs. In contrast, in their basal condition, they were extremely sensitive to Stxs. Interestingly, TNF-α addition to IFN-γ reverted the Stx-resistant phenotype, which corresponded with its well-established enhancing effect on Stx toxicity. Toxin binding to the cell was barely affected by IFN-γ. Also, the toxin uptake in the Stx-resistant phenotype was more than 100-fold greater than that of normal cells, when compared at Stx concentrations resulting in equivalent degrees of cell damage. Protein synthesis was inhibited by nearly 90 % in the Stx-resistant phenotype after 24 h toxin exposure. This indicated that the intracellular toxin was active as an N-glycosidase, while cells were still over 60 % viable, suggesting a possible unknown cytotoxic function of Stx. In conclusion, this study shows a unique effect of IFN-γ in the suppression of the toxicity of Stxs in a human microvascular endothelial cell model and the involvement of a novel mechanism in this suppression.


2021 ◽  
Author(s):  
Elina Korpela ◽  
Darren Yohan ◽  
Lee CL Chin ◽  
Anthony Kim ◽  
Xiaoyong Huang ◽  
...  

Background Most cancer patients are treated with radiotherapy, but the treatment can also damage the surrounding normal tissue. Acute skin damage from cancer radiotherapy diminishes patients’ quality of life, yet effective biological interventions for this damage are lacking. Protecting microvascular endothelial cells from irradiation-induced perturbations is emerging as a targeted damage-reduction strategy. Since Angiopoetin-1 signaling through the Tie2 receptor on endothelial cells opposes microvascular perturbations in other disease contexts, we used a preclinical Angiopoietin-1 mimic called Vasculotide to investigate its effect on skin radiation toxicity using a preclinical model. Methods Athymic mice were treated intraperitoneally with saline or Vasculotide and their flank skin was irradiated with a single large dose of ionizing radiation. Acute cutaneous damage and wound healing were evaluated by clinical skin grading, histology and immunostaining. Diffuse reflectance optical spectroscopy, myeloperoxidase-dependent bioluminescence imaging of neutrophils and a serum cytokine array were used to assess inflammation. Microvascular endothelial cell response to radiation was tested with in vitro clonogenic and Matrigel tubule formation assays. Tumour xenograft growth delay experiments were also performed. Appreciable differences between treatment groups were assessed mainly using parametric and non-parametric statistical tests comparing areas under curves, followed by post-hoc comparisons. Results In vivo, different schedules of Vasculotide treatment reduced the size of the irradiation-induced wound. Although skin damage scores remained similar on individual days, Vasculotide administered post irradiation resulted in less skin damage overall. Vasculotide alleviated irradiation-induced inflammation in the form of reduced levels of oxygenated hemoglobin, myeloperoxidase bioluminescence and chemokine MIP-2. Surprisingly, Vasculotide-treated animals also had higher microvascular endothelial cell density in wound granulation tissue. In vitro, Vasculotide enhanced the survival and function of irradiated endothelial cells. Conclusions Vasculotide administration reduces acute skin radiation damage in mice, and may do so by affecting several biological processes. This radiation protection approach may have clinical impact for cancer radiotherapy patients by reducing the severity of their acute skin radiation damage.


2020 ◽  
Vol 21 (15) ◽  
pp. 5249 ◽  
Author(s):  
Anne-Claire Lagrée ◽  
Fabienne Fasani ◽  
Clotilde Rouxel ◽  
Marine Pivet ◽  
Marie Pourcelot ◽  
...  

Microvascular endothelial cells constitute potential targets for exogenous microorganisms, in particular for vector-borne pathogens. Their phenotypic and functional variations according to the organs they are coming from provide an explanation of the organ selectivity expressed in vivo by pathogens. In order to make available relevant tools for in vitro studies of infection mechanisms, our aim was to immortalize bovine organospecific endothelial cells but also to assess their permissivity to viral infection. Using transfection with SV40 large T antigen, six bovine microvascular endothelial cell lines from various organs and one macrovascular cell line from an umbilical cord were established. They display their own panel of endothelial progenitor/mature markers, as assessed by flow cytometry and RT-qPCR, as well as the typical angiogenesis capacity. Using both Bluetongue and foot-and-mouth disease viruses, we demonstrate that some cell lines are preferentially infected. In addition, they can be transfected and are able to express viral proteins such as BTV8-NS3. Such microvascular endothelial cell lines bring innovative tools for in vitro studies of infection by viruses or bacteria, allowing for the study of host-pathogen interaction mechanisms with the actual in vivo target cells. They are also suitable for applications linked to microvascularization, such as anti-angiogenic and anti-tumor research, growing fields in veterinary medicine.


2009 ◽  
Vol 296 (2) ◽  
pp. L220-L228 ◽  
Author(s):  
Bing Zhu ◽  
Li Zhang ◽  
Mikhail Alexeyev ◽  
Diego F. Alvarez ◽  
Samuel J. Strada ◽  
...  

Type 5 phosphodiesterase (PDE5) inhibitors increase endothelial cell cGMP and promote angiogenesis. However, not all endothelial cell phenotypes express PDE5. Indeed, whereas conduit endothelial cells express PDE5, microvascular endothelial cells do not express this enzyme, and they are rapidly angiogenic. These findings bring into question whether PDE5 activity is a critical determinant of the endothelial cell angiogenic potential. To address this question, human full-length PDE5A1 was stably expressed in pulmonary microvascular endothelial cells. hPDE5A1 expression reduced the basal and atrial natriuretic peptide (ANP)-stimulated cGMP concentrations in these cells. hPDE5A1-expressing cells displayed attenuated network formation on Matrigel in vitro and also produced fewer blood vessels in Matrigel plug assays in vivo; the inhibitory actions of hPDE5A1 were reversed using sildenafil. To examine whether endogenous PDE5 activity suppresses endothelial cell angiogenic potential, small interfering RNA (siRNA) constructs were stably expressed in pulmonary artery endothelial cells. siRNA selectively decreased PDE5 expression and increased basal and ANP-stimulated cGMP concentrations in these conduit cells. PDE5 downregulation increased network formation on Matrigel in vitro and increased blood vessel formation in Matrigel plug assays in vivo. Collectively, our results indicate that PDE5 activity is an essential determinant of angiogenesis and suggest that PDE5 downregulation in microvascular endothelium imparts a stable, enhanced angiogenic potential to this cell type.


1994 ◽  
Vol 267 (4) ◽  
pp. L433-L441 ◽  
Author(s):  
J. C. Magee ◽  
A. E. Stone ◽  
K. T. Oldham ◽  
K. S. Guice

Highly pure primary cultures of rat lung microvascular endothelial cells were obtained from peripheral lung tissue using a combination of selective culture strategies. The cells had a characteristic morphology consistent with an endothelial origin and were positive for a number of endothelial cell markers, including uptake of fluorescent acetylated lactate dehydrogenase, binding of the lectin Bandeiraea simplicifolia I, and positive immunofluorescence staining with two endothelial cell monoclonal antibodies. The cells behaved as microvascular endothelial cells using an in vitro angiogenesis assay. This isolation method provides a simple method for culturing the pulmonary microvasculature of the rat and these studies support the idea that endothelial cells from different vessels exhibit phenotypic heterogeneity. This method should prove useful for studying specialized endothelial cell function and differentiation in vitro.


2021 ◽  
Author(s):  
Elina Korpela ◽  
Darren Yohan ◽  
Lee CL Chin ◽  
Anthony Kim ◽  
Xiaoyong Huang ◽  
...  

Background Most cancer patients are treated with radiotherapy, but the treatment can also damage the surrounding normal tissue. Acute skin damage from cancer radiotherapy diminishes patients’ quality of life, yet effective biological interventions for this damage are lacking. Protecting microvascular endothelial cells from irradiation-induced perturbations is emerging as a targeted damage-reduction strategy. Since Angiopoetin-1 signaling through the Tie2 receptor on endothelial cells opposes microvascular perturbations in other disease contexts, we used a preclinical Angiopoietin-1 mimic called Vasculotide to investigate its effect on skin radiation toxicity using a preclinical model. Methods Athymic mice were treated intraperitoneally with saline or Vasculotide and their flank skin was irradiated with a single large dose of ionizing radiation. Acute cutaneous damage and wound healing were evaluated by clinical skin grading, histology and immunostaining. Diffuse reflectance optical spectroscopy, myeloperoxidase-dependent bioluminescence imaging of neutrophils and a serum cytokine array were used to assess inflammation. Microvascular endothelial cell response to radiation was tested with in vitro clonogenic and Matrigel tubule formation assays. Tumour xenograft growth delay experiments were also performed. Appreciable differences between treatment groups were assessed mainly using parametric and non-parametric statistical tests comparing areas under curves, followed by post-hoc comparisons. Results In vivo, different schedules of Vasculotide treatment reduced the size of the irradiation-induced wound. Although skin damage scores remained similar on individual days, Vasculotide administered post irradiation resulted in less skin damage overall. Vasculotide alleviated irradiation-induced inflammation in the form of reduced levels of oxygenated hemoglobin, myeloperoxidase bioluminescence and chemokine MIP-2. Surprisingly, Vasculotide-treated animals also had higher microvascular endothelial cell density in wound granulation tissue. In vitro, Vasculotide enhanced the survival and function of irradiated endothelial cells. Conclusions Vasculotide administration reduces acute skin radiation damage in mice, and may do so by affecting several biological processes. This radiation protection approach may have clinical impact for cancer radiotherapy patients by reducing the severity of their acute skin radiation damage.


2018 ◽  
Vol 20 (1) ◽  
pp. 122 ◽  
Author(s):  
Mathias Kaiser ◽  
Malgorzata Burek ◽  
Stefan Britz ◽  
Frauke Lankamp ◽  
Steffi Ketelhut ◽  
...  

Microvascular endothelial cells are an essential part of many biological barriers, such as the blood–brain barrier (BBB) and the endothelium of the arteries and veins. A reversible opening strategy to increase the permeability of drugs across the BBB could lead to improved therapies due to enhanced drug bioavailability. Vanilloids, such as capsaicin, are known to reversibly open tight junctions of epithelial and endothelial cells. In this study, we used several in vitro assays with the murine endothelial capillary brain cells (line cEND) as a BBB model to characterize the interaction between capsaicin and endothelial tight junctions.


Sign in / Sign up

Export Citation Format

Share Document