scholarly journals Elimination of the O-linked glycosylation site at Thr 104 results in the generation of a soluble human-transferrin receptor

Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 580-586 ◽  
Author(s):  
EA Rutledge ◽  
BJ Root ◽  
JJ Lucas ◽  
CA Enns

Abstract The transferrin receptor (TfR) is the plasma membrane protein responsible for the binding and internalization of the major iron- transport protein, transferrin. The function of the single O-linked oligosaccharide near the transmembrane domain of the TfR at amino acid Thr 104 is unknown. To elucidate the effect of the O-linked carbohydrate on TfR function, the oligosaccharide was eliminated by replacing Thr 104 with Asp and the mutated cDNA was expressed in a cell line lacking endogenous TfR. Elimination of the oligosaccharide at Thr 104 results in a form of the receptor that is susceptible to cleavage. A 78-kD soluble TfR that can bind transferrin is released into the growth medium. The intact mutant TfR is not grossly altered in its structure and does not differ significantly from the wild-type human receptor in many respects: (1) It shows the same distribution between the plasma membrane and intracellular compartments; (2) the binding constant for transferrin is similar to that of the wild-type TfR; and (3) it is not rapidly degraded. Protein-sequence analysis of the soluble form indicates that the sequence begins at amino acid 101 of the intact receptor. This is the same cleavage site reported for a soluble form of normal receptor found in human serum. Substitution of Gly, Glu, or Met at position 104 also results in increased cleavage of the TfR and suggests that elimination of the O-linked carbohydrate at position 104 enhances the susceptibility of TfR to cleavage and may mimic a naturally occurring process previously described as being related to erythropoiesis.

Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 580-586 ◽  
Author(s):  
EA Rutledge ◽  
BJ Root ◽  
JJ Lucas ◽  
CA Enns

The transferrin receptor (TfR) is the plasma membrane protein responsible for the binding and internalization of the major iron- transport protein, transferrin. The function of the single O-linked oligosaccharide near the transmembrane domain of the TfR at amino acid Thr 104 is unknown. To elucidate the effect of the O-linked carbohydrate on TfR function, the oligosaccharide was eliminated by replacing Thr 104 with Asp and the mutated cDNA was expressed in a cell line lacking endogenous TfR. Elimination of the oligosaccharide at Thr 104 results in a form of the receptor that is susceptible to cleavage. A 78-kD soluble TfR that can bind transferrin is released into the growth medium. The intact mutant TfR is not grossly altered in its structure and does not differ significantly from the wild-type human receptor in many respects: (1) It shows the same distribution between the plasma membrane and intracellular compartments; (2) the binding constant for transferrin is similar to that of the wild-type TfR; and (3) it is not rapidly degraded. Protein-sequence analysis of the soluble form indicates that the sequence begins at amino acid 101 of the intact receptor. This is the same cleavage site reported for a soluble form of normal receptor found in human serum. Substitution of Gly, Glu, or Met at position 104 also results in increased cleavage of the TfR and suggests that elimination of the O-linked carbohydrate at position 104 enhances the susceptibility of TfR to cleavage and may mimic a naturally occurring process previously described as being related to erythropoiesis.


1998 ◽  
Vol 72 (8) ◽  
pp. 6657-6664 ◽  
Author(s):  
Kenneth N. Fish ◽  
Cecilia Soderberg-Naucler ◽  
Jay A. Nelson

ABSTRACT Human cytomegalovirus (HCMV) infection of an astrocytoma cell line (U373) or human fibroblast (HF) cells results in a differential cell distribution of the major envelope glycoprotein gB (UL55). This 906-amino-acid type I glycoprotein contains an extracellular domain with a signal sequence, a transmembrane domain, and a 135-amino-acid cytoplasmic tail with a consensus casein kinase II (CKII) site located at Ser900. Since phosphorylation of proteins in the secretory pathway is an important determinant of intracellular trafficking, the state of gB phosphorylation in U373 and HF cells was examined. Analysis of cells expressing wild-type gB and gB with site-specific mutations indicated that the glycoprotein was equally phosphorylated at a single site, Ser900, in both U373 and HF cells. To assess the effect of charge on gB surface expression in U373 cells, Ser900 was replaced with an aspartate (Asp) or alanine (Ala) residue to mimic the phosphorylated and nonphosphorylated states, respectively. Expression of the Asp but not the Ala gB mutation resulted in an increase in the steady-state expression of gB at the plasma membrane (PM) in U373 cells. In addition, treatment of U373 cells with the phosphatase inhibitor tautomycin resulted in the accumulation of gB at the PM. Interestingly, the addition of a charge at Ser900 trapped gB in a low-level cycling pathway at the PM, preventing trafficking of the protein to thetrans-Golgi network or other intracellular compartments. Therefore, these results suggest that a tautomycin-sensitive phosphatase regulates cell-specific PM retrieval of gB to intracellular compartments.


1990 ◽  
Vol 110 (2) ◽  
pp. 283-294 ◽  
Author(s):  
S Q Jing ◽  
T Spencer ◽  
K Miller ◽  
C Hopkins ◽  
I S Trowbridge

Wild-type and mutant human transferrin receptors have been expressed in chicken embryo fibroblasts using a helper-independent retroviral vector. The internalization of mutant human transferrin receptors, in which all but four of the 61 amino acids of the cytoplasmic domain had been deleted, was greatly impaired. However, when expressed at high levels, such "tailless" mutant receptors could provide chicken embryo fibroblasts with sufficient iron from diferric human transferrin to support a normal rate of growth. As the rate of recycling of the mutant receptors was not significantly different from wild-type receptors, an estimate of relative internalization rates could be obtained from the distribution of receptors inside the cell and on the cell surface under steady-state conditions. This analysis and the results of iron uptake studies both indicate that the efficiency of internalization of tailless mutant receptors is approximately 10% that of wild-type receptors. Further studies of a series of mutant receptors with different regions of the cytoplasmic domain deleted suggested that residues within a 10-amino acid region (amino acids 19-28) of the human transferrin receptor cytoplasmic domain are required for efficient endocytosis. Insertion of this region into the cytoplasmic domain of the tailless mutant receptors restored high efficiency endocytosis. The only tyrosine residue (Tyr 20) in the cytoplasmic domain of the human transferrin receptor is found within this 10-amino acid region. A mutant receptor containing glycine instead of tyrosine at position 20 was estimated to be approximately 20% as active as the wild-type receptor. We conclude that the cytoplasmic domain of the transferrin receptor contains a specific signal sequence located within amino acid residues 19-28 that determines high efficiency endocytosis. Further, Tyr 20 is an important element of that sequence.


1990 ◽  
Vol 1 (4) ◽  
pp. 369-377 ◽  
Author(s):  
T E McGraw ◽  
F R Maxfield

The objective of this work is to identify the elements of the human transferrin receptor that are involved in receptor internalization, intracellular sorting, and recycling. We have found that an aromatic side chain at position 20 on the cytoplasmic portion of the human transferrin receptor is required for efficient internalization. The wild-type human transferrin receptor has a tyrosine at this position. Replacement of the Tyr-20 with an aromatic amino acid does not alter the rate constant of internalization, whereas substitution with the nonaromatic amino acids serine, leucine, or cysteine reduces the internalization rate constant approximately three-fold. These results are consistent with similar studies of other receptor systems that have also documented the requirement for a tyrosine in rapid internalization. The amino terminus of the transferrin receptor is cytoplasmic, with the tyrosine 41 amino acids from the membrane. These two features distinguish the transferrin receptor from the other membrane proteins for which the role of tyrosine in internalization has been examined, because these proteins have the opposite polarity with respect to the membrane and because the tyrosines are located closer to the membrane (within 25 amino acids). The externalization rate for the recycling of the transferrin receptor is not altered by any of these substitutions, demonstrating that the aromatic amino acid internalization signal is not required for the efficient exocytosis of internalized receptor.


Glycobiology ◽  
1992 ◽  
Vol 2 (4) ◽  
pp. 355-359 ◽  
Author(s):  
Gary R. Hayes ◽  
Caroline A. Enns ◽  
John J. Lucas

2001 ◽  
Vol 281 (1) ◽  
pp. C215-C223 ◽  
Author(s):  
Robert T. Watson ◽  
Jeffrey E. Pessin

Insulin recruits glucose transporter 4 (GLUT-4) vesicles from intracellular stores to the plasma membrane in muscle and adipose tissue by specific interactions between the vesicle membrane-soluble N-ethylmaleimide-sensitive factor attachment protein target receptor (SNARE) protein VAMP-2 and the target membrane SNARE protein syntaxin 4. Although GLUT-4 vesicle trafficking has been intensely studied, few have focused on the mechanism by which the SNAREs themselves localize to specific membrane compartments. We therefore set out to identify the molecular determinants for localizing several syntaxin isoforms, including syntaxins 3, 4, and 5, to their respective intracellular compartments (plasma membrane for syntaxins 3 and 4; cis-Golgi for syntaxin 5). Analysis of a series of deletion and chimeric syntaxin constructs revealed that the 17-amino acid transmembrane domain of syntaxin 5 was sufficient to direct the cis-Golgi localization of several heterologous reporter constructs. In contrast, the longer 25-amino acid transmembrane domain of syntaxin 3 was sufficient to localize reporter constructs to the plasma membrane. Furthermore, truncation of the syntaxin 3 transmembrane domain to 17 amino acids resulted in a complete conversion to cis-Golgi compartmentalization that was indistinguishable from syntaxin 5. These data support a model wherein short transmembrane domains (≤17 amino acids) direct the cis-Golgi localization of syntaxins, whereas long transmembrane domains (≥23 amino acids) direct plasma membrane localization.


2008 ◽  
Vol 294 (4) ◽  
pp. G1052-G1059 ◽  
Author(s):  
Pijun Wang ◽  
Soichiro Hata ◽  
Yansen Xiao ◽  
John W. Murray ◽  
Allan W. Wolkoff

Organic anion transport protein 1a1 (oatp1a1), a prototypical member of the oatp family of highly homologous transport proteins, is expressed on the basolateral (sinusoidal) surface of rat hepatocytes. The organization of oatp1a1 within the plasma membrane has not been well defined, and computer-based models have predicted possible 12- as well as 10-transmembrane domain structures. Which of oatp1a1's four potential N-linked glycosylation sites are actually glycosylated and their influence on transport function have not been investigated in a mammalian system. In the present study, topology of oatp1a1 in the rat hepatocyte plasma membrane was examined by immunofluorescence analysis using an epitope-specific antibody designed to differentiate a 10- from a 12-transmembrane domain model. To map glycosylation sites, the asparagines at the each of the four N-linked glycosylation consensus sites were mutagenized to glutamines. Mutagenized oatp1a1 constructs were expressed in HeLa cells, and effects on protein expression and transport activity were assessed. These studies revealed that oatp1a1 is a 12-transmembrane-domain protein in which the second and fifth extracellular loops are glycosylated at asparagines 124, 135, and 492, whereas the potential glycosylation site at asparagine 62 is not utilized, consistent with its position in a transmembrane domain. Constructs in which more than one glycosylation site were eliminated had reduced transport activity but not necessarily reduced transporter expression. This was in accord with the finding that fully unglycosylated oatp1a1 was well expressed but located intracellularly with limited transport ability as a consequence of its reduced cell surface expression.


2003 ◽  
Vol 285 (4) ◽  
pp. C968-C976 ◽  
Author(s):  
O. Vagin ◽  
S. Denevich ◽  
G. Sachs

The factors determining trafficking of the gastric H,K-ATPase to the apical membrane remain elusive. To identify such determinants in the gastric H,K-ATPase, fusion proteins of yellow fluorescent protein (YFP) and the gastric H,K-ATPase β-subunit (YFP-β) and cyan fluorescent protein (CFP) and the gastric H,K-ATPase α-subunit (CFP-α) were expressed in HEK-293 cells. Then plasma membrane delivery of wild-type CFP-α, wild-type YFP-β, and YFP-β mutants lacking one or two of the seven β-subunit glycosylation sites was determined using confocal microscopy and surface biotinylation. Expression of the wild-type YFP-β resulted in the plasma membrane localization of the protein, whereas the expressed CFP-α was retained intracellularly. When coexpressed, both CFP-α and YFP-β were delivered to the plasma membrane. Removing each of the seven glycosylation sites, except the second one, from the extracellular loop of YFP-β prevented plasma membrane delivery of the protein. Only the mutant lacking the second glycosylation site (Asn103Gln) was localized both intracellularly and on the plasma membrane. A double mutant lacking the first (Asn99Gln) and the second (Asn103Gln) glycosylation sites displayed intracellular accumulation of the protein. Therefore, six of the seven glycosylation sites in the β-subunit are essential for the plasma membrane delivery of the β-subunit of the gastric H,K-ATPase, whereas the second glycosylation site (Asn103), which is not conserved among the β-subunits from different species, is not critical for plasma delivery of the protein.


2008 ◽  
Vol 92 (3) ◽  
pp. 537-542 ◽  
Author(s):  
W. WOITH ◽  
I. NÜSSLEIN ◽  
C. ANTONI ◽  
D. I. DEJICA ◽  
T. H. WINKLER ◽  
...  

2003 ◽  
Vol 369 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Xiang Y. LIU ◽  
Teah L. WITT ◽  
Larry H. MATHERLY

The reduced folate carrier (RFC; SLC19A1) is closely related to the thiamine transporter, SLC19A2 (ThTr1). Hydropathy models for these homologous transporters predict up to 12 transmembrane domains (TMDs), with internally oriented N- and C-termini and a large central loop between TMDs 6 and 7. The homologies are localized mostly in the TMDs. However, there is little similarity in their N- and C-terminal domains and the central peptide linkers connecting putative TMDs 1—6 and TMDs 7—12. To explore the functional role of the 61-amino acid central linker in the human RFC (hRFC), we introduced deletions of 49 and 60 amino acids into this region, differing by the presence of a stretch of 11 highly conserved amino acids between the human and rodent RFCs (positions 204—214). An additional hRFC construct was prepared in which only the 11 conserved amino acids were deleted. The resulting hRFCD215—R263Δ, hRFCK204—R263Δ and hRFCK204—R214Δ proteins were transfected into transport-impaired K562 cells. The deletion constructs were all expressed in plasma membranes; however, they were completely inactive for methotrexate and (6S)5-formyl tetrahydrofolate transport. Insertion of non-homologous 73- and 84-amino acid fragments from the structurally analogous ThTr1 linker region into position 204 of hRFCK204—R263Δ restored low levels of transport (16—21% of the wild type). Insertion of the ThTr1 linkers into hRFCD215—R263Δ at position 215 restored 60—80% of wild-type levels of transport. Collectively, our results suggest that the role of the hRFC linker peptide is to provide the proper spatial orientation between the two halves of the hRFC protein for optimal function, and that this is largely independent of amino acid sequence. Our results also demonstrate a critical transport role for the stretch of 11 conserved amino acids starting at position 204 of hRFC.


Sign in / Sign up

Export Citation Format

Share Document