scholarly journals X-linked sideroblastic anemia: identification of the mutation in the erythroid-specific delta-aminolevulinate synthase gene (ALAS2) in the original family described by Cooley

Blood ◽  
1994 ◽  
Vol 84 (11) ◽  
pp. 3915-3924 ◽  
Author(s):  
PD Cotter ◽  
DL Rucknagel ◽  
DF Bishop

In 1945, Thomas Cooley described the first cases of X-linked sideroblastic anemia (XLSA) in two brothers from a large family in which the inheritance of the disease was documented through six generations. Almost 40 years later the enzymatic defect in XLSA was identified as the deficient activity of the erythroid-specific form of delta-aminolevulinate synthase (ALAS2), the first enzyme in the heme biosynthetic pathway. To determine the nature of the mutation in the ALAS2 gene causing XLSA in Cooley's original family, genomic DNAs were isolated from two affected hemizygotes, and each ALAS2 exon was PCR amplified and sequenced. A single transversion (A to C) was identified in exon 5. The mutation predicted the substitution of leucine for phenylalanine at residue 165 (F165L) in the first highly conserved domain of the ALAS2 catalytic core shared by all species. No other nucleotide changes were found by sequencing each of the 11 exons, including intron/exon boundaries, 1 kb of 52-flanking and 350 nucleotides of 32-flanking sequence. The mutation introduced an Mse I site and restriction analysis of PCR-amplified genomic DNA confirmed the presence of the lesion in the two affected brothers and in three obligate heterozygotes from three generations of this family. Carrier diagnosis of additional family members identified the mutation in one of the proband's sisters. After prokaryotic expression and affinity purification of both mutant and normal ALAS2 fusion proteins, the specific activity of the F165L mutant enzyme was about 26% of normal. The cofactor, pyridoxal 52-phosphate, activated and/or stabilized the purified mutant recombinant enzyme in vitro, consistent with the pyridoxine-responsive anemia in affected hemizygotes from this family.

Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4623-4624 ◽  
Author(s):  
Kazumichi Furuyama ◽  
Hideo Harigae ◽  
Chiharu Kinoshita ◽  
Toshihiko Shimada ◽  
Kazuko Miyaoka ◽  
...  

Abstract X-linked sideroblastic anemia (XLSA) is due to deficient activity of erythroid-specific 5-aminolevulinate synthase (ALAS2). We report here a patient who developed sideroblastic anemia at the age of 81 years while undergoing hemodialysis. The diagnosis of sideroblastic anemia was established by the presence of ringed sideroblasts in the bone marrow, and treatment with oral pyridoxine completely eliminated the ringed sideroblasts. We identified a novel point mutation in the fifth exon of this patient's ALAS2 gene, which resulted in an amino acid change at residue 159 from aspartic acid to asparagine (Asp159Asn). In vitro analyses of recombinant Asp159Asn ALAS2 revealed that this mutation accounted for the pyridoxine-responsiveness of this disease. The very late onset in this case of XLSA emphasizes that nutritional deficiencies caused either by dietary irregularities in the elderly or, as in this case, by maintenance hemodialysis therapy, may uncover occult inherited enzymatic deficiencies in the heme biosynthetic pathway.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 822-830 ◽  
Author(s):  
Kazumichi Furuyama ◽  
Hiroyoshi Fujita ◽  
Tadashi Nagai ◽  
Kentaro Yomogida ◽  
Hiroshi Munakata ◽  
...  

Abstract To elucidate how pyridoxine-refractory X-linked sideroblastic anemia (XLSA) develops, we analyzed the erythroid-specific 5-aminolevulinate synthase (ALAS-E) gene of a patient with the anemia. The activity and amount of the enzyme in bone marrow cells of the patient were found to be approximately 5% of the normal control. We identified a point mutation, which introduces an amino acid substitution from Asp 190 to Val. In transient transfection analyses using quail fibroblasts, accumulation of aberrantly processed proteins, the sizes of which were larger than that of mature ALAS-E, was found in mitochondria. The proteins were reproducibly detected in assays combining in vitro transcription/translation of ALAS-E precursor and import of the precursor into isolated mouse mitochondria. These results suggest that the mutation causing pyridoxine-refractory XLSA affects the processing of the ALAS-E precursor, thus provoking instability of the ALAS-E protein.


2005 ◽  
Vol 83 (5) ◽  
pp. 620-630 ◽  
Author(s):  
Mohamed Abu-Farha ◽  
Jacques Niles ◽  
William G Willmore

5-aminolevulinate synthase (ALAS; E.C. 2.3.1.37) catalyzes the first and rate-limiting step of heme synthesis within the mitochondria. Two isozymes of ALAS, encoded by separate genes, exist. ALAS1 is ubiquitously expressed and provides heme for cytochromes and other hemoproteins. ALAS2 is expressed exclusively in erythroid cells and synthesizes heme specifically for haemoglobin. A database search for proteins potentially regulated by oxygen tension revealed that ALAS2 contained a sequence of amino acids (LXXLAP where L is leucine, X is any amino acid, A is alanine, and P is proline) not occurring in ALAS1, which may be hydroxylated under normoxic conditions (21% O2) and target the enzyme for ubiquitination and degradation by the proteasome. We examined protein turnover of ALAS2 in the presence of cycloheximide in K562 cells. Normoxic ALAS2 had a turnover time of approximately 36 h. Hypoxia (1% O2) and inhibition of the proteasome increased both the stability and the specific activity of ALAS2 (greater than 2- and 7-fold, respectively, over 72 h of treatment). Mutation of a key proline within the LXXLAP sequence of ALAS2 also stabilized the protein beyond 36 h under normoxic conditions. The von Hippel-Lindau (vHL) protein was immunoprecipitated with FLAG epitope-tagged ALAS2 produced in normoxic cells but not in hypoxic cells, suggesting that the ALAS2 is hydroxylated under normoxic conditions and targeted for ubiquitination by the E3 ubiquitin ligase system. ALAS2 could also be ubiquitinated under normoxia using an in vitro ubiquitination assay. The present study provides evidence that ALAS2 is broken down under normoxic conditions by the proteasome and that the prolyl-4-hydroxylase/vHL E3 ubiquitin ligase pathway may be involved.Key words: erythroid-specific 5-aminolevulinate synthase, hypoxia, hydroxylation, prolyl-4-hydroxylases, E3 ubiquitin ligases, von Hippel-Lindau protein, proteasome.


2002 ◽  
Vol 184 (23) ◽  
pp. 6465-6471 ◽  
Author(s):  
Timothy J. Herdendorf ◽  
Darrell R. McCaslin ◽  
Katrina T. Forest

ABSTRACT Bacterial surface motility works by retraction of surface-attached type IV pili. This retraction requires the PilT protein, a member of a large family of putative NTPases from type II and IV secretion systems. In this study, the PilT homologue from the thermophilic eubacterium Aquifex aeolicus was cloned, overexpressed, and purified. A. aeolicus PilT was shown to be a thermostable ATPase with a specific activity of 15.7 nmol of ATP hydrolyzed/min/mg of protein. This activity was abolished when a conserved lysine in the nucleotide-binding motif was altered. The substrate specificity was low; UTP, CTP, ATP, GTP, dATP, and dGTP served as substrates, UTP having the highest activity of these in vitro. Based on sedimentation equilibrium and size exclusion chromatography, PilT was identified as a ≈5- to 6-subunit oligomer. Potential implications of the NTPase activity of PilT in pilus retraction are discussed.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 822-830 ◽  
Author(s):  
Kazumichi Furuyama ◽  
Hiroyoshi Fujita ◽  
Tadashi Nagai ◽  
Kentaro Yomogida ◽  
Hiroshi Munakata ◽  
...  

To elucidate how pyridoxine-refractory X-linked sideroblastic anemia (XLSA) develops, we analyzed the erythroid-specific 5-aminolevulinate synthase (ALAS-E) gene of a patient with the anemia. The activity and amount of the enzyme in bone marrow cells of the patient were found to be approximately 5% of the normal control. We identified a point mutation, which introduces an amino acid substitution from Asp 190 to Val. In transient transfection analyses using quail fibroblasts, accumulation of aberrantly processed proteins, the sizes of which were larger than that of mature ALAS-E, was found in mitochondria. The proteins were reproducibly detected in assays combining in vitro transcription/translation of ALAS-E precursor and import of the precursor into isolated mouse mitochondria. These results suggest that the mutation causing pyridoxine-refractory XLSA affects the processing of the ALAS-E precursor, thus provoking instability of the ALAS-E protein.


2013 ◽  
Vol 451 (3) ◽  
pp. 439-451 ◽  
Author(s):  
Marta Magdalena Gabryelska ◽  
Eliza Wyszko ◽  
Maciej Szymański ◽  
Mariusz Popenda ◽  
Jan Barciszewski

Hammerhead ribozyme is a versatile tool for down-regulation of gene expression in vivo. Owing to its small size and high activity, it is used as a model for RNA structure–function relationship studies. In the present paper we describe a new extended hammerhead ribozyme HH-2 with a tertiary stabilizing motif constructed on the basis of the tetraloop receptor sequence. This ribozyme is very active in living cells, but shows low activity in vitro. To understand it, we analysed tertiary structure models of substrate–ribozyme complexes. We calculated six unique catalytic core geometry parameters as distances and angles between particular atoms that we call the ribozyme fingerprint. A flanking sequence and tertiary motif change the geometry of the general base, general acid, nucleophile and leaving group. We found almost complete correlation between these parameters and the decrease of target gene expression in the cells. The tertiary structure model calculations allow us to predict ribozyme intracellular activity. Our approach could be widely adapted to characterize catalytic properties of other RNAs.


1991 ◽  
Vol 66 (04) ◽  
pp. 453-458 ◽  
Author(s):  
John T Brandt

SummaryLupus anticoagulants (LAs) are antibodies which interfere with phospholipid-dependent procoagulant reactions. Their clinical importance is due to their apparent association with an increased risk of thrombo-embolic disease. To date there have been few assays for quantifying the specific activity of these antibodies in vitro and this has hampered attempts to purify and characterize these antibodies. Methods for determining phospholipid-dependent generation of thrombin and factor Xa are described. Isolated IgG fractions from 7 of 9 patients with LAs were found to reproducibly inhibit enzyme generation in these assay systems, permitting quantitative expression of inhibitor activity. Different patterns of inhibitory activity, based on the relative inhibition of thrombin and factor Xa generation, were found, further substantiating the known heterogeneity of these antibodies. These systems may prove helpful in further purification and characterization of LAs.


1995 ◽  
Vol 73 (05) ◽  
pp. 805-811 ◽  
Author(s):  
Yasuo Takahashi ◽  
Yoshitaka Hosaka ◽  
Hiromi Niina ◽  
Katsuaki Nagasawa ◽  
Masaaki Naotsuka ◽  
...  

SummaryWe examined the anticoagulant activity of two major molecules of soluble thrombomodulin purified from human urine. The apparent molecular weights of these urinary thrombomodulins (UTMs) were 72,000 and 79,000, respectively. Both UTMs showed more potent cofactor activity for protein C activation [specific activity >5,000 thrombomodulin units (TMU)/mg] than human placental thrombomodulin (2,180 TMU/mg) and rabbit lung thrombomodulin (1,980 TMU/mg). The UTMs prolonged thrombin-induced fibrinogen clotting time (>1 TMU/ml), APTT (>5 TMU/ml), TT (>5 TMU/ml) and PT (>40 TMU/ml) in a dose-dependent fashion. These effects appeared in the concentration range of soluble thrombomodulins present in human plasma and urine. In the rat DIC model induced by thromboplastin, administration of UTMs by infusion (300-3,000 TMU/kg) restored the hematological abnormalities derived from DIC in a dose-dependent fashion. These results demonstrate that UTMs exhibit potent anticoagulant and antithrombotic activities, and could play a physiologically important role in microcirculation.


1982 ◽  
Vol 47 (03) ◽  
pp. 244-248 ◽  
Author(s):  
D P Thomas ◽  
Rosemary E Merton ◽  
T W Barrowcliffe ◽  
L Thunberg ◽  
U Lindahl

SummaryThe in vitro and in vivo characteristics of two oligosaccharide heparin fragments have been compared to those of unfractionated mucosal heparin. A decasaccharide fragment had essentially no activity by APTT or calcium thrombin time assays in vitro, but possessed very high specific activity by anti-Factor Xa assays. When injected into rabbits at doses of up to 80 ¼g/kg, this fragment was relatively ineffective in impairing stasis thrombosis despite producing high blood levels by anti-Xa assays. A 16-18 monosaccharide fragment had even higher specific activity (almost 2000 iu/mg) by chromogenic substrate anti-Xa assay, with minimal activity by APTT. When injected in vivo, this fragment gave low blood levels by APTT, very high anti-Xa levels, and was more effective in preventing thrombosis than the decasaccharide fragment. However, in comparison with unfractionated heparin, the 16-18 monosaccharide fragment was only partially effective in preventing thrombosis, despite producing much higher blood levels by anti-Xa assays.It is concluded that the high-affinity binding of a heparin fragment to antithrombin III does not by itself impair venous thrombogenesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential.


1970 ◽  
Vol 63 (3) ◽  
pp. 441-453 ◽  
Author(s):  
Asbjørn Aakvaag

ABSTRACT Slices of non-luteinized porcine ovaries have been incubated in the presence or absence of human chorionic gonadotrophin (HCG) and exogenous radioactive substrates. Progesterone, 17α-hydroxyprogesterone and androstenedione were isolated in a radiochemically pure form. The chemical mass and the specific activity were determined by gas liquid chromatography and liquid scintillation spectrometry. HCG stimulated the rate of formation of androstenedione in the absence of exogenous substrates with a factor of 4–8. In the presence of pregnenolone or progesterone at a concentration of about 2 × 10−6 mol/l the stimulatory effect of HCG was either abolished or markedly reduced. The conversion of exogenous progesterone to androstenedione was reduced in response to HCG indicating that the capacity of the tissue to convert progesterone to androstenedione was limited, and that the limit was reached at this rather low substrate concentration. These findings furthermore suggest that the endogenous rather than the exogenous radioactive substrate will be »preferred« by the tissue. The observations demonstrate the necessity of measuring both the radioactivity and the chemical mass of the products in investigations of this type using radioactive substrates. The formation of progesterone from endogenous substrates was also stimulated by HCG. [1-14C] acetate and [7α-3H]cholesterol were not utilized by the tissue for steroid formation. Exogenous [4-14C] pregnenolone and [7α-3H] progesterone in similar concentration were both utilized for production of 17α-hydroxyprogesterone and androstenedione. HCG had no effect on the relative utilization of the radioactive substrates.


Sign in / Sign up

Export Citation Format

Share Document