scholarly journals Expression of axl, a transforming receptor tyrosine kinase, in normal and malignant hematopoiesis

Blood ◽  
1994 ◽  
Vol 84 (6) ◽  
pp. 1931-1941 ◽  
Author(s):  
A Neubauer ◽  
A Fiebeler ◽  
DK Graham ◽  
JP O'Bryan ◽  
CA Schmidt ◽  
...  

Abstract We previously reported the cloning, and characterization of a receptor tyrosine kinase, axl, from two patients with chronic myelogenous leukemia. Herein, we describe the expression pattern of axl in normal and malignant hematopoietic tissue axl message is detected in normal human bone marrow but not significantly in normal blood leukocytes. Cell separation experiments showed that axl is expressed in hematopoietic CD34+ progenitor and marrow stromal cells, at low levels in peripheral monocytes, but not in lymphocytes or granulocytes. Consistent with the normal pattern of axl expression, axl RNA was found predominantly in diseases of the myeloid lineage: 39 of 66 (59%) patients with myeloproliferative disorders (acute myeloid leukemia, chronic myeloid leukemia (CML) in chronic phase, CML in myeloid blast crisis, and myelodysplasia) showed significant axl transcription, as compared with 1 of 45 (2%) lymphoid leukemias (chronic lymphocytic leukemia, acute lymphocytic leukemia, and CML in lymphoid blast crisis). Treatment of K562 cells with the phorbol ester, 12-O- tetradecanoylphorbol-13-acetate (TPA), administration of interferon alpha (IFN alpha) to normal monocytes, and treatment of U937 cells with TPA and IFN tau significantly induced axl expression, supporting a role for this kinase in the intracellular signaling of myeloid cells through a variety of biochemical pathways. These results suggest that the axl kinase may be operative in normal and malignant myeloid biology.

Blood ◽  
1994 ◽  
Vol 84 (6) ◽  
pp. 1931-1941 ◽  
Author(s):  
A Neubauer ◽  
A Fiebeler ◽  
DK Graham ◽  
JP O'Bryan ◽  
CA Schmidt ◽  
...  

We previously reported the cloning, and characterization of a receptor tyrosine kinase, axl, from two patients with chronic myelogenous leukemia. Herein, we describe the expression pattern of axl in normal and malignant hematopoietic tissue axl message is detected in normal human bone marrow but not significantly in normal blood leukocytes. Cell separation experiments showed that axl is expressed in hematopoietic CD34+ progenitor and marrow stromal cells, at low levels in peripheral monocytes, but not in lymphocytes or granulocytes. Consistent with the normal pattern of axl expression, axl RNA was found predominantly in diseases of the myeloid lineage: 39 of 66 (59%) patients with myeloproliferative disorders (acute myeloid leukemia, chronic myeloid leukemia (CML) in chronic phase, CML in myeloid blast crisis, and myelodysplasia) showed significant axl transcription, as compared with 1 of 45 (2%) lymphoid leukemias (chronic lymphocytic leukemia, acute lymphocytic leukemia, and CML in lymphoid blast crisis). Treatment of K562 cells with the phorbol ester, 12-O- tetradecanoylphorbol-13-acetate (TPA), administration of interferon alpha (IFN alpha) to normal monocytes, and treatment of U937 cells with TPA and IFN tau significantly induced axl expression, supporting a role for this kinase in the intracellular signaling of myeloid cells through a variety of biochemical pathways. These results suggest that the axl kinase may be operative in normal and malignant myeloid biology.


Blood ◽  
1989 ◽  
Vol 73 (6) ◽  
pp. 1720-1728 ◽  
Author(s):  
KM Sullivan ◽  
PL Weiden ◽  
R Storb ◽  
RP Witherspoon ◽  
A Fefer ◽  
...  

Abstract To assess the influence of graft-versus-host disease (GVHD) on recurrent leukemia and survival after allogeneic marrow transplantation, we studied 1,202 patients with acute nonlymphocytic leukemia (ANL), acute lymphocytic leukemia (ALL), and chronic myelogenous leukemia (CML) given unmodified marrow grafts from HLA- identical siblings. Proportional hazards regression models using acute GVHD and chronic GVHD as time-dependent covariates demonstrated a significant association of GVHD with a decreased relative risk (RR, 0.33 to 0.42) of relapse in patients with ANL, ALL, and CML transplanted in advanced disease. Among patients developing either acute or chronic GVHD, treatment failure (that is, mortality or relapse) was decreased in patients with ALL transplanted in relapse (RR = 0.70, P less than .033) and CML in blast crisis (RR = 0.37, P less than .009). This effect was independent of age, sex, preparative regimen, GVHD prophylaxis, or length of follow-up. Five-year actuarial estimates were derived for the subset of 657 patients who survived in remission 150 days after transplant and were at risk for development of chronic GVHD. Among patients with ANL in first remission or CML in chronic phase, GVHD had an adverse effect on survival and no apparent influence on relapse. Among patients with ANL and ALL transplanted in relapse, the probability of relapse after day 150 was 74% without [corrected] GVHD, 45% with acute and chronic GVHD, 35% with [corrected] only acute GVHD, and 34% with only chronic GVHD (P less than .001). Actuarial survival in these four GVHD groups was 25%, 34%, 59%, and 62%, respectively (P less than .009). Among patients with CML in acceleration or blast crisis, the probability of relapse after day 150 was 65% without GVHD and 36% with acute and/or chronic GVHD (P less than .017). We conclude that acute and chronic GVHD were associated with a durable antileukemic effect and improved survival in patients transplanted in advanced stages of ALL and CML.


Blood ◽  
1995 ◽  
Vol 86 (5) ◽  
pp. 1916-1923 ◽  
Author(s):  
HJ Buhring ◽  
I Sures ◽  
B Jallal ◽  
FU Weiss ◽  
FW Busch ◽  
...  

The class I receptor tyrosine kinase (RTK) HER2 is an oncoprotein that is frequently involved in the pathogenesis of tumors of epithelial origin. Here we report mRNA expression in peripheral blood and bone marrow cells from healthy donors in hematopoietic cell lines and leukemic blasts from patients with acute lymphoblastic leukemia (ALL), acute myeloblastic leukemia (AML), chronic lymphoblastic leukemia (CLL), and chronic myeloid leukemia (CML). However, cell surface expression of HER2 protein (p185HER2) was found exclusively on a subset of leukemic cells of the B-lymphoblastic lineage. p185HER2 expression was found on blasts in 2 of 15 samples from infants, 9 of 19 samples from adult patients with C-ALL (CD19+CD10+), and 1 of 2 samples from patients with pro-B ALL (CD19+CD10-), whereas none of the leukemic cells from patients with AML (0/30), T-ALL (0/7), CLL (0/5) (CD19+CD5+), or CML in chronic and accelerated phase (0/5) or in blast crisis with myeloid differentiation (0/14) were positive for p185HER2. However, cells from 3 of 4 patients with CML in B-lymphoid blast crisis (CD19+CD10+) expressed high levels of p185HER2, which was also found on the surface of the CML-derived B-cell lines BV-173 and Nalm-1. Our study shows p185HER2 expression on malignant cells of hematopoietic origin for the first time. Aberrant expression of this oncogenic receptor tyrosine kinase in hematopoietic cell types may be an oncogenic event contributing to the development of a subset of B- lymphoblastic leukemias.


Blood ◽  
1981 ◽  
Vol 58 (6) ◽  
pp. 1107-1111 ◽  
Author(s):  
M Koya ◽  
T Kanoh ◽  
H Sawada ◽  
H Uchino ◽  
K Ueda

Abstract Adenosine deaminase (ADA) and ecto-5′-nucleotidase (5′-N) activities were examined in peripheral leukocytes from patients with leukemias, including nine patients with chronic myeloid leukemia (CML) in blast crisis. Four of none cases of CML in blast crisis were myeloid and the remaining lymphoid morphologically. The diagnosis of CML in lymphoid blast crisis was further contributed by the measurement of terminal deoxynucleotidyl transferase (TdT) activity. In all four cases of lymphoid blast crisis and one of myeloid blast crisis, leukemia cells had high 5′-N activity, while there was a little or no detectable activity in those from four cases of myeloid blast crisis and all of CML in chronic phase. ADA activity was high in seven of nine patients with blast crisis. Taken together, leukemia cells from two cases of lymphoid blast crisis had high ADA and 5′-N activities comparable to those in acute lymphocytic leukemia (ALL) cells. In contrast, the enzyme activities of leukemia cells from all but one patient in myeloid blast crisis were in a range similar to acute myeloid leukemia cells. The implications of these findings are as follows: (1) 5′-N may be used as a new biochemical marker of CML in lymphoid blast crisis. (2) Some lymphoid cells of CML in blast crisis have high ADA, 5′-N, and TdT activities and thus are very similar to ALL cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4712-4712
Author(s):  
Ke Zhang ◽  
Hagop M. Kantarjian ◽  
Wanlong Ma ◽  
XI Zhang ◽  
Xiuqiang Wang ◽  
...  

Abstract Abstract 4712 The ubiquitin-proteasome system (UPS) plays a major role in cell homeostasis in normal and neoplastic states. Expression and function of the UPS system vary with the specific characteristics of individual cell types, suggesting that determination of UPS “signatures” could be useful in identifying various cell populations. Since direct analysis of cancer cells is often problematic, even in hematologic diseases, we explored the potential of using UPS signatures in plasma to differentiate between various leukemias. We first analyzed plasma UPS profiles of patients with acute myeloid leukemia (AML; n=111), acute lymphoblastic leukemia (ALL; n=29), advanced myelodysplastic syndrome (MDS; n=20), chronic lymphocytic leukemia (CLL; n=118), or chronic myeloid leukemia (CML; n=128; 46 in accelerated/blast crisis [ACC/BL], 82 in chronic phase), and 85 healthy control subjects. Plasma levels of proteasome, ubiquitin (poly-ubiquitin), and the 3 proteasome enzymatic activities (chymotrypsin-like [Ch-L], caspase-like [Cas-L], trypsin-like [Tr-L]) were measured. Specific activities were calculated by normalizing each of the 3 enzyme activities to the levels of proteasome protein in plasma (Ch-L/p, Cas-L/p, and Tr-L/p). These 8 variables were used in multivariate logistic regression models to differentiate between leukemic processes. UPS signatures provided clear differentiation between patients with a leukemic process and normal controls (AUC=0.991), using 6 different variables (Tr-L/P, Ch-L, Ch-L/p, Cas-L, Cas-L/P, ubiquitin). Distinguishing between acute (AML, ALL, MDS) and chronic (CML, CLL) processes was less efficient (AUC=0.853 using Tr-L, Tr-L/P, Cas-L/P, Ch-L/P, proteasome, Ch-L), likely due to the high proportion (36%) of CML patients in ACC/BL phase. However, UPS signatures generally yielded powerful differentiation between individual leukemias (Table). MDS was not well differentiated from AML (AUC=0.791), reflecting the significant biological overlap of these diseases. These data support the potential usefulness of the UPS profile to aid in the differential diagnosis of various leukemias. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1669-1669
Author(s):  
Franck E. Nicolini ◽  
Françoise Huguet ◽  
Hélène Labussière-Wallet ◽  
Yann Guillermin ◽  
Madeleine Etienne ◽  
...  

Abstract Abstract 1669 Most epidemiologic studies performed in chronic myelogenous leukemia (CML) relate that the disease occurs preferentially in males with a sex ratio of ∼1.2. In addition, CML can be diagnosed in young adults and masculine fertility is a matter of concern, particularly because tyrosine kinase inhibitors (TKI) may impact on spermatogenesis by a selective inhibition of Src kinases, PDGF-R and c-kit. Sperm cryopreservation is recommended by some authors at diagnosis in males that would expect to have children later on. In a retrospective analysis we have analysed the spermograms of 62 chronic phase (CP) and 2 onset blast crisis (BC) CML males referred to our 3 centres between 2001 and 2012, collected at diagnosis before TKI treatment, and we have compared the results obtained to those of 15 healthy volunteer donors from the cryopreservation bank database, after informed consent. In 10 patients we could collect some data for patients being on imatinib mesylate (IM). CML patients had a median age of 31 (16–48) years, significantly younger than that in the control group of healthy donors: 37 (34–45) years (p=0.001). Sokal scores were 24% high, 27% intermediate and 49% low for evaluable patients (13 patients unknown or not available). The median BCR-ABLIS value at diagnosis was 77.65%. Patients had a median duration of 26 (0–38) days of hydroxyurea prior to commencing any TKI and 65% of evaluable patients had HU before TKI. None of the patients got interferon prior to TKI. The semen cryopreservation was performed within a median of 10 (2–102) days after CML diagnosis and after a median abstinence of 5 (0.5–30) days. The median volume of semen obtained in CML patients was 2.95 (0.5–14.9) ml and 3 (1.4–5.3) ml for normal donors (p=0.3). Williams test showed 72 (0–87)% of necrospermia in patients versus 18 (4–32)% in donors (p=0.00003). The median number of spermatozoa obtained was not different in patients [46 (0.03–200) 106/ml] than that in donors [74 (19.2–253) 106/ml] (p=0.24), as well as the number of spermatozoa per ejaculate observed (p=0.49). The motility of spermatozoa at 30 minutes after collection was not different between patients (median = 47.5%) and donors (median = 50%) (p=0.12), however higher numbers of atypical spermatozoa were observed in patients [median = 77.5 (16–100)%] rather than in donors [median = 45% (22–89)%], p=0.008, and the multiple abnormalities index (MAI) was significantly higher in patients [median = 1.99 (1.14–2.7)] than that in donors [median = 1.33 (1.09–1.55)], p=0.00006. There was no correlation between age at diagnosis, Sokal index and the number of spermatozoa per ml obtained (p=0.7 and 0.21 respectively). Ten CP CML patients had spermograms after a median of 1440 (9–1456) days of IM treatment and the results obtained were compared to i) the results of each individual patient at CP diagnosis and ii) to the results of healthy comparators. In comparison to the characteristics observed at diagnosis, the semen volume (median = 3.1 ml), Williams test (median = 65%), the motility at 30 minutes (median = 37.5%) and the MAI (median = 1.71) were not different (p=ns for all), however, the numbers of spermatozoa (median = 14.9 106/ml and = 37.05 ml per ejaculate) collected on IM were significantly lower (p=0.014 and p=0.045 respectively). The different parameters evaluated on IM were compared to those of normal controls and showed significant alterations. The semen volume was not different (p=0.94), neither the motility of spermatozoa (p=0.24), but the Williams test was highly perturbed on IM [median 65 (24–79)% versus 18 (4–32)% in donors] p=0.00003, as well as the numbers of spermatozoa as 106 per ml, collected on IM [median 14.9 (0.67–179)) versus normal [74 (19.2–253)], p=0.0036 or as 106 per ejaculate collected on IM [median 37.5 (2.68–572.8)) versus normal [149 (30–535.3)], p=0.026. Atypical forms were significantly more abundant on IM [median = 80 (68–90)%] versus healthy controls [median = 45% (22–89)], p=0.0058. Finally, the MAI was severely altered on IM [median = 1.71 (1.61–1.98)] versus normal individuals [median = 1.33 (1.09–1.55)], p=0.00013. In conclusion, this work demonstrates the existence of significant sperm alterations in young males with CML at diagnosis of undetermined origin, prior to any treatment. These alterations persist on IM treatment and little is know about the impact of second generation TKI. Thus the most appropriate approach remains a matter of debate in thus setting. Disclosures: Nicolini: Novartis, Bristol Myers-Squibb, Pfizer, ARIAD, and Teva: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Huguet:Novartis, BMS: Speakers Bureau. Michallet:Novartis, Pfizer, Teva, Genzyme, Janssen Cilag, BMS, Merck, Pfizer, Gilead, Alexion: Consultancy, Speakers Bureau. Etienne:Novartis, Pfizer, speaker for Novartis, BMS: Consultancy.


Hematology ◽  
2007 ◽  
Vol 2007 (1) ◽  
pp. 384-391 ◽  
Author(s):  
Jerald P. Radich

Abstract The natural history of chronic myeloid leukemia (CML) progresses from a relatively benign chronic phase into a fatal blast crisis, which resembles acute leukemia, but is incurable by chemotherapy. Fortunately, the progression can usually be blocked by tyrosine kinase therapy or allogeneic transplantation. The seemingly stereotypical march of progression involves changes in genetic instability and DNA repair, proliferation, differentiation, and apoptosis, and thus may serve as a unique model of cancer evolution and progression. Given that all treatments work much better in chronic-phase than advanced-phase disease, the clinical dilemma is predicting and detecting patients bound to evolve into advanced disease. This is especially important in the age of tyrosine kinase inhibition (TKI) therapy. The purpose of this review is to address the biology of blast crisis in the age of tyrosine kinase therapy, with an emphasis on what genes or pathways may be future targets of predictive assays or treatments of progression.


2021 ◽  
Vol 118 (11) ◽  
pp. e2101566118
Author(s):  
Francesca Lovat ◽  
Pierluigi Gasparini ◽  
Giovanni Nigita ◽  
Karilyn Larkin ◽  
John C. Byrd ◽  
...  

Despite advances that have improved the treatment of chronic myeloid leukemia (CML) patients in chronic phase, the mechanisms of the transition from chronic phase CML to blast crisis (BC) are not fully understood. Considering the key role of miR-15/16 loci in the pathogenesis of myeloid and lymphocytic leukemia, here we aimed to correlate the expression of miR-15a/16 and miR-15b/16 to progression of CML from chronic phase to BC. We analyzed the expression of the two miR-15/16 clusters in 17 CML patients in chronic phase and 22 patients in BC and in 11 paired chronic phase and BC CML patients. BC CMLs show a significant reduction of the expression of miR-15a/-15b/16 compared to CMLs in chronic phase. Moreover, BC CMLs showed an overexpression of miR-15/16 direct targets such as Bmi-1, ROR1, and Bcl-2 compared to CMLs in chronic phase. This study highlights the loss of both miR-15/16 clusters as a potential oncogenic driver in the transition from chronic phase to BC in CML patients.


Blood ◽  
1989 ◽  
Vol 73 (6) ◽  
pp. 1720-1728 ◽  
Author(s):  
KM Sullivan ◽  
PL Weiden ◽  
R Storb ◽  
RP Witherspoon ◽  
A Fefer ◽  
...  

To assess the influence of graft-versus-host disease (GVHD) on recurrent leukemia and survival after allogeneic marrow transplantation, we studied 1,202 patients with acute nonlymphocytic leukemia (ANL), acute lymphocytic leukemia (ALL), and chronic myelogenous leukemia (CML) given unmodified marrow grafts from HLA- identical siblings. Proportional hazards regression models using acute GVHD and chronic GVHD as time-dependent covariates demonstrated a significant association of GVHD with a decreased relative risk (RR, 0.33 to 0.42) of relapse in patients with ANL, ALL, and CML transplanted in advanced disease. Among patients developing either acute or chronic GVHD, treatment failure (that is, mortality or relapse) was decreased in patients with ALL transplanted in relapse (RR = 0.70, P less than .033) and CML in blast crisis (RR = 0.37, P less than .009). This effect was independent of age, sex, preparative regimen, GVHD prophylaxis, or length of follow-up. Five-year actuarial estimates were derived for the subset of 657 patients who survived in remission 150 days after transplant and were at risk for development of chronic GVHD. Among patients with ANL in first remission or CML in chronic phase, GVHD had an adverse effect on survival and no apparent influence on relapse. Among patients with ANL and ALL transplanted in relapse, the probability of relapse after day 150 was 74% without [corrected] GVHD, 45% with acute and chronic GVHD, 35% with [corrected] only acute GVHD, and 34% with only chronic GVHD (P less than .001). Actuarial survival in these four GVHD groups was 25%, 34%, 59%, and 62%, respectively (P less than .009). Among patients with CML in acceleration or blast crisis, the probability of relapse after day 150 was 65% without GVHD and 36% with acute and/or chronic GVHD (P less than .017). We conclude that acute and chronic GVHD were associated with a durable antileukemic effect and improved survival in patients transplanted in advanced stages of ALL and CML.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2912-2912
Author(s):  
Jonathan M. Gerber ◽  
Lawrence J. Druhan ◽  
David Foureau ◽  
Elizabeth Jandrisevits ◽  
Amanda Lance ◽  
...  

Abstract Introduction: Recent evidence supports the clinical significance of leukemia stem cells (LSCs) in acute myeloid leukemia (AML). However, the identification of LSCs in acute lymphocytic leukemia (ALL) has proved challenging, as transplantation studies in immunocompromised mice have yielded conflicting results. The distinction between Philadelphia chromosome-positive (Ph+) ALL and lymphoid blast crisis (LBC) chronic myeloid leukemia (CML) is also controversial. We previously identified a clinically relevant CD34+CD38- population of LSCs with intermediate (int) levels of aldehyde dehydrogenase (ALDH) activity (CD34+CD38-ALDHint) in AML [Gerber, et al. Blood, 2012]. This population was not present in healthy controls and could be distinguished from normal hematopoietic stem cells (HSCs), which had higher levels of ALDH activity (CD34+CD38-ALDHhigh). We hypothesized that the same approach could be used to identify a putative LSC population in ALL. Furthermore, in contrast to most cases of AML, the chronic phase CML stem cell was found to reside in the same CD34+CD38-ALDHhigh population as normal HSCs [Gerber, et al. Am J Hematol, 2011]. We therefore also hypothesized that the presence of BCR/ABL mutations in the CD34+CD38-ALDHhigh population might help distinguish LBC CML from Ph+ ALL. Methods: Bone marrow and/or peripheral blood specimens were collected at diagnosis from patients with B cell ALL or LBC CML on an IRB-approved protocol. A total of 7 patients were evaluated: 2 Ph- ALL, 2 Ph+ ALL, and 3 LBC CML patients. CD34+ cells were isolated by magnetic bead and column selection, then analyzed by flow cytometry with respect to CD38 expression and ALDH activity. Sorted cell populations were analyzed by fluorescence in situ hybridization (FISH) for leukemia-specific abnormalities. Polymerase chain reaction was performed on clinical samples to determine the presence of a p190 vs. p210 transcript. Results: All patients harbored an aberrant CD34+CD38-ALDHint population, similar to that previously seen in AML. This population was ≥95% positive for BCR/ABL by FISH in all Ph+ ALL and LBC CML cases. It was similarly positive (≥75%) for other leukemia-specific FISH abnormalities (including trisomy 4, 8, 10, 12, and/or 21) in all four ALL cases, as well as one LBC CML case. Conversely, the CD34+CD38-ALDHhigh population (which typically contains the normal HSCs) lacked any of the other cytogenetic abnormalities in all of the cases, irrespective of Ph status or a diagnosis of ALL vs. CML. Notably, the CD34+CD38-ALDHhigh population was negative for BCR/ABL in the Ph+ ALL cases but was >95% positive for BCR/ABL by FISH in the LBC CML cases. The B cell differentiation marker, CD19, was expressed on the CD34+CD38-ALDHint but not the CD34+CD38-ALDHhigh population in all ALL cases, both Ph- and Ph+. In contrast, CD19 expression was variable in the LBC CML cases. Both Ph+ ALL cases possessed a p190 BCR/ABL transcript, whereas all of the LBC CML cases contained a p210 transcript. Also of note, the CD34+CD38-ALDHint population was persistently detectable in one of the LBC CML patients while in complete remission after induction therapy; that patient subsequently relapsed. Conclusions: An abnormal CD34+CD38-ALDHint population was identified in all cases of B cell ALL and LBC CML. This population is analogous to a previously identified, clinically relevant LSC population in AML and may represent a putative LSC population in ALL. The CD34+CD38-ALDHhigh population was normal by FISH in the ALL cases but contained the BCR/ABL mutation in the LBC CML cases, thus permitting distinction between Ph+ ALL and LBC CML (which also differed based on the presence of p190 vs. p210 transcripts, respectively). Additionally, clonal evolution from chronic phase to lymphoid blast crisis CML was apparent, based on the acquisition of additional cytogenetic abnormalities unique to the CD34+CD38-ALDHint population as compared to the CD34+CD38-ALDHhigh population. The presence of CD19 on the putative LSCs in the four cases of ALL suggest that CD19-directed therapies may target the LSCs and thus may have curative potential in those cases. This assay may serve as a means to evaluate other possible therapeutic targets. Lastly, the detection of the abnormal CD34+CD38-ALDHint population may have utility as a minimal residual disease assay for monitoring response to treatment. These findings warrant validation in a larger patient cohort. Disclosures Gerber: Janssen: Research Funding; Alexion: Membership on an entity's Board of Directors or advisory committees; Spectrum: Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. Grunwald:Alexion: Membership on an entity's Board of Directors or advisory committees; Amgen: Research Funding; Incyte Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Medtronic: Equity Ownership; Janssen: Research Funding; Ariad: Membership on an entity's Board of Directors or advisory committees; Forma Therapeutics: Research Funding. Avalos:Seattle Genetics: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document