scholarly journals Retroviral transduction and expression of the human alkyltransferase cDNA provides nitrosourea resistance to hematopoietic cells

Blood ◽  
1995 ◽  
Vol 85 (11) ◽  
pp. 3342-3351 ◽  
Author(s):  
JA Allay ◽  
LL Dumenco ◽  
ON Koc ◽  
L Liu ◽  
SL Gerson

Myelosuppression is the dose-limiting toxicity for nitrosourea chemotherapy. This toxicity predominantly involves modification of the O6 position of guanine with an alkyl moiety. The enzyme responsible for repair of O6-alkylguanine adducts, O6-alkylguanine-DNA alkyltransferase (alkyltransferase), is expressed at low levels in bone marrow (BM) cells. High alkyltransferase expression prevents the cytotoxicity and carcinogenicity of nitrosoureas in several transgenic and in vitro gene transfer models. We used gene transfer using a novel myeloproliferative sarcoma virus (MPSV) based retrovirus (vM5MGMT) to express the human alkyltransferase cDNA (MGMT) in human and murine hematopoietic cells. Transduced K562 cells had very high levels of alkyltransferase expression and significantly increased resistance to 1,3-bis (2-chloroethyl) nitrosourea (BCNU) as compared with untransduced K562 cells. Primary murine BM progenitors showed a high transduction efficiency with vM5MGMT and have increased BCNU resistance in vitro. After BM transplantation with vM5MGMT-transduced BM cells and BCNU treatment of these mice, BM, spleen and thymus had a 10- to 40-fold increase in alkyltransferase expression that persisted for at least 23 weeks posttransplantation. Progenitor cells procured from mice expressing high levels of alkyltransferase also had increased resistance to BCNU. Thus, an MPSV-based retroviral vector transduces mouse and human hematopoietic cells at high efficiency and results in high levels of gene expression both in vitro and in vivo. Overexpression of the alkyltransferase protein may protect hematopoietic progenitors from nitrosourea-induced myelosuppression.

Blood ◽  
1996 ◽  
Vol 88 (12) ◽  
pp. 4452-4462 ◽  
Author(s):  
NJ Elwood ◽  
H Zogos ◽  
T Willson ◽  
CG Begley

The clinical application of gene transfer is hindered by the availability of the multipotential stem cells and the difficulty in obtaining efficient retroviral transduction. To assess potential means by which gene transfer into human hemopoietic stem cells might be enhanced, the retroviral transduction efficiency of human bone marrow cells (BM) or peripheral blood progenitor cells (PBPC) was compared at multiple time points after in vivo administration of granulocyte colony- stimulating factor (G-CSF). This was further compared with the transduction efficiency of cells mobilized with G-CSF plus stem cell factor (SCF) in a cohort of patients randomized to receive either one or two growth factors and with normal BM function. Using the LNL6 retrovirus, retroviral transduction efficiencies of up to 19% were observed for both PBPC and BM (n = 26 patients). There was at least a 100-fold increase in PBPC with G-CSF alone and a further 30-fold increase in the total number of progenitor cells available for retroviral transduction using the combination of SCF plus G-CSF. However, pretreatment of patients with G-CSF with or without SCF did not enhance the retroviral infectability of growth factor-mobilized progenitor cells. The effect of the growth factor, Flk-2/Flt3 ligand (FL), was also examined with respect to retroviral transduction efficiency of human progenitor cells. FL plus IL-3 in vitro increased the retroviral transduction efficiency up to eightfold compared with results observed using other combinations of cytokines tested (P < .001). These findings have clinical implications both for increasing the number of target cells for in vivo gene-marking/gene-therapy studies and improving the efficiency of gene transfer.


Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 624-634 ◽  
Author(s):  
JE Dick ◽  
S Kamel-Reid ◽  
B Murdoch ◽  
M Doedens

Abstract The ability to transfer new genetic material into human hematopoietic cells provides the foundation for characterizing the organization and developmental program of human hematopoietic stem cells. It also provides a valuable model in which to test gene transfer and long-term expression in human hematopoietic cells as a prelude to human gene therapy. At the present time such studies are limited by the absence of in vivo assays for human stem cells, although recent descriptions of the engraftment of human hematopoietic cells in immune-deficient mice may provide the basis for such an assay. This study focuses on the establishment of conditions required for high efficiency retrovirus- mediated gene transfer into human hematopoietic progenitors that can be assayed in vitro in short-term colony assays and in vivo in immune- deficient mice. Here we report that a 24-hour preincubation of human bone marrow in 5637-conditioned medium, before infection, increases gene transfer efficiency into in vitro colony-forming cells by sixfold; interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) provide the same magnitude increase as 5637-conditioned medium. In contrast, incubation in recombinant growth factors IL-1, IL-3, and granulocyte- macrophage colony-stimulating factor increases gene transfer efficiency by 1.5- to 3-fold. Furthermore, preselection in high concentrations of G418 results in a population of cells significantly enriched for G418- resistant progenitors (up to 100%). These results, obtained using detailed survival curves based on colony formation in G418, have been substantiated by directly detecting the neo gene in individual colonies using the polymerase chain reaction. Using these optimized protocols, human bone marrow cells were genetically manipulated with a neo retrovirus vector and transplanted into immune-deficient bg/nu/xid mice. At 1 month and 4 months after the transplant, the hematopoietic tissues of these animals remained engrafted with genetically manipulated human cells. More importantly, G418-resistant progenitors that contained the neo gene were recovered from the bone marrow and spleen of engrafted animals after 4 months. These experiments establish the feasibility of characterizing human stem cells using the unique retrovirus integration site as a clonal marker, similar to techniques developed to elucidate the murine stem cell hierarchy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2555-2555
Author(s):  
Stephen R. Larsen ◽  
Keefe Chng ◽  
Shangzhen Zhou ◽  
John Wright ◽  
Margaret Armstrong ◽  
...  

Abstract Aims: MSCs are cells being investigated for use in various therapies including facilitation of HSC transplantation and as gene therapy delivery vehicles. We have explored the potential to increase the number of bone marrow (BM) MSCs in vivo, induce mobilization using various cytokine regimens and improve gene transfer into these cells with adeno-associated virus (AAV) in a baboon model. Method: Baboons received cytokines as follows: 1. G-CSF 100mcg/kg/day for 5 days; 2. pegylated G-CSF (pegG-CSF), single dose 300mcg/kg day −5; 3. G-CSF 100mcg/kg/day + stem cell factor (SCF) 50mcg/kg/day for 5 days; and 4. pegylated megakaryocyte growth and development factor (pegMGDF) 1mcg/kg second daily for 10 days + G-CSF 100mcg/kg/day for 5 days starting day −5. Animals underwent BM aspiration at baseline and on the final day of cytokines along with leukapheresis to isolate PBMNCs for detection of peripheral blood (PB) CFU-F. The immunophenotype and differentiation potential of CFU-F derived from animals before and after cytokines was compared. The ability of AAV vectors pseudotyped with capsids derived from AAV of serotypes 1, 2, 3, 4, 5, 6, and 8 to mediate transduction of baboon and human MSCs was assessed. Results: Augmentation of bone marrow MSCs was observed with all cytokine regimens with the fold-increase compared to baseline as follows: 4.1, 2.1, 7.6 and 11.2 after G-CSF, pegG-CSF, G-CSF+SCF and G-CSF+pegMGDF respectively (see Figure 1). The immunophenotype of MSCs obtained after cytokines was identical to baseline cells as was their differentation potential. CFU-F were not detected in baseline PB however they were detected in 3/5 animals after G-CSF+SCF at a frequency of 0.8 to 1.5/mL, but no other cytokine regimen. A similar pattern of transduction efficiency using AAV was shared by human and baboon MSCs (see Figure 2) using control Ad293 cells. Specifically AAV vectors expressing capsids of serotypes 2, 3 and 5 were most efficient in transducing human and baboon MSCs. Those expressing capsids from serotypes 1, 4, 6, and 8 were much less efficient in transducing MSCs from either species. Baboon MSCs were able to be transduced by about 100-fold more than their human equivalent cells using AAV serotypes 2, 3, and 5. Conclusion: This is the first report of mobilization of primate MSCs and, together with the demonstration of in vivo augmentation and AAV gene transfer, offers increased therapeutic opportunities for their safe application in a burgeoning number of diseases. Figure 1: In vivo Bone Marrow CFU-F Augmentation following cytokines Figure 1:. In vivo Bone Marrow CFU-F Augmentation following cytokines Figure 2: Transduction profile of AAV vectors expressing capsids of various serotypes Figure 2:. Transduction profile of AAV vectors expressing capsids of various serotypes


2018 ◽  
Vol 36 (6_suppl) ◽  
pp. 120-120
Author(s):  
Flavia De Carlo ◽  
Litty Thomas ◽  
Rounak Nande ◽  
Olivia Boskovic ◽  
Gailen Marshall ◽  
...  

120 Background: Gene transfer to malignant sites using human adenoviruses (hAd) has been limited because of their immunogenicity. Murine cells often lack some of the receptors needed for hAd infection; therefore, are generally non-permissive for hAd infection and replication, which limits translational studies of adenoviral gene transfer techniques. We developed a gene transfer method, which uses a combination of lipid-encapsulated perfluorocarbon microbubbles (MBs) and ultrasound (US) to shield and deliver hAds to a specific tissue bypassing the requirement of the coxsackie and adenovirus receptor (CAR). Methods: Transduction efficiency and GFP protein expression of hAd.GFP was assessed by flow cytometry and fluorescence microscopy in murine TRAMP-C2 and human DU145 prostate cancer cells. Innate and acquired immunity response was determined by ELISA and CTL assay in C57BL/6 mice bearing TRAMP-C2 syngeneic tumor grafts following injections of MBs-Ad.GFP complexes in the presence or absence of ultrasound. Results: We observed that the murine prostate cancer cells TRAMP-C2 were transduced less efficiently by hAd.GFP than the human DU145 cells. We showed in vitro that the transduction rate was increased significantly in both TRAMP-C2 and DU145 prostate cancer cells when delivering the Ad particles by a combination of MBs and US. Moreover, we observed expression of the GFP transgene in both cell lines at 48 hours and 72 hours. Lack of activation of the innate and acquired immunity was observed in vivo by quantifying IL-6 and TNF-α cytokines, and by assaying neutralizing IgG antibodies and CTLs activity, following intratumoral or intravenous injections of MBs-Ad.GFP complexes in the presence or absence of ultrasound. Conclusions: This study demonstrates the feasibility of using the TRAMP-C2 murine model of prostate adenocarcinoma to translate our ultrasound-mediated MB-Ad delivery system from the bench to the clinic. Our data provides evidence that the TRAMP-C2 prostate cancer graft model is a suitable system to study in immune competent animals the capacity of lipid-encapsulated perfluorocarbon MBs and US, to shield and deliver hAds to a site-specific tissue bypassing the requirement of specific receptors.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 452-452
Author(s):  
Ou Cao ◽  
Lixin Wang ◽  
Sushrusha Nayak ◽  
Roland W. Herzog

Abstract Gene therapy for the X-linked bleeding disorder hemophilia B may be limited by immune responses to the factor IX (F.IX) gene product. Hepatic adeno-associated virus (AAV) gene transfer can induce immune tolerance to F.IX (JCI111:1347, PNAS103:4592). Tolerance is associated with activation of regulatory cells that suppress antibody formation to F.IX. In order to identify these regulatory cells, splenocytes of C57BL/6 mice tolerized to human F.IX (hF.IX) by heptic gene transfer (portal vein injection of 1x1011 AAV vector genomes) were adoptively transferred to naive mice of the same strain. Recipient mice were immunized with hF.IX in adjuvant on the next day. Compared to cells transferred from control animals (no gene transfer), total splenocytes, CD4+ cells, or CD4+CD25+ cells were equally efficient in suppression of anti-hF.IX formation (n=7–8 per experimental group, P&lt;0.02 for comparison to total splenocytes, CD4+ cells, or CD4+CD25- cells of controls), while CD4- cells failed to suppress, and CD4+CD25- cells were inefficient. CD4+CD25+ from naive control mice, which contain regulatory T cells but lack specificity for hF.IX, gave highly variable results and on average failed to suppress. When tolerized C57BL/6 mice were challenged with hF.IX/adjuvant, the animals lacked antibody formation to hF.IX and in vitro cytokine release and showed an ~2-fold increase in FoxP3 message in splenic CD4+ cells in vivo. Taken together, these data indicate that induction of regulatory CD4+CD25+ T cells is part of the tolerance mechanism. However, the significance of this finding was unclear. In the next experiment, C57BL/6 mice received hepatic AAV-hF.IX gene transfer and were additionally injected with rat anti-mouse CD25 or with isotype control rat IgG (ip injections at days 0, 14, 28, and 42, n=5 per group). Analysis of peripheral blood cells by flow cytometry showed presence of CD4+CD25+ cells at a frequency of 8–10% in controls and undetectable levels in anti-CD25 treated mice. By day 49, 4/5 anti-CD25 treated mice had a low-titer, but detectable antibody (IgG1) to hF.IX. Subsequent challenge with hF.IX/cF.IX caused a rise in anti-hF.IX to 0.5–2 μg/ml in 3/5 anti-CD25 treated mice within 3 weeks. None of the mice treated with control IgG (0/5) developed a detectable antibody to hF.IX even after challenge. These data demonstrate that CD4+CD25+ regulatory T cells are required for tolerance induction to F.IX. Thus far, we failed to break tolerance by depletion of CD25+ cells at later time points (i.e. during the maintenance phase of tolerance, when other mechanisms such as T cell anergy and deletion may become more prevalent). To obtain definitive evidence for induction of CD4+CD25+ Treg, hepatic AAV-ova gene transfer was performed in DO11.10-tg Rag-2 −/− BALB/c mice, which are deficient in Treg. The DO11.10 T cell receptor is specific for ova peptide 323–339/MHC class II I-Ad complex. Within 2 weeks after gene transfer, CD4+CD25+GITR+ cells emerged in the thymus and in secondary lymphoid organs. Frequency of these cells increased to 2–4% by 2 months and subsequently remained at that level. These cells also expressed CTLA-4 and FoxP3 (&gt;100-fold increase in FoxP3 message compared to CD4+ cells from naive mice or compared to CD4+CD25- cells of AAV-ova transduced mice), and efficiently suppressed CD4+CD25- cells in vitro. In summary, hepatic AAV gene transfer induces transgene product-specific CD4+CD25+ Treg, which suppress antibody formation to the transgene product and are required for tolerance induction. These results should have broad implications for in vivo gene transfer.


2002 ◽  
Vol 282 (3) ◽  
pp. G565-G572 ◽  
Author(s):  
Qing Yu ◽  
Loretta G. Que ◽  
Don C. Rockey

Adenovirus-mediated gene transfer has become an important tool with which to introduce genetic material into cells. Available data emphasize efficient adenoviral transduction of parenchymal liver cells (i.e., hepatocytes) in both in vitro and in vivo model systems, typically in normal cells. The aim of this study was to evaluate gene transfer to nonparenchymal (and parenchymal) cells of the normal and injured rat liver. Hepatocytes, stellate cells, and endothelial cells were isolated by standard methods. Liver injury was induced by bile duct ligation or carbon tetrachloride administration. Cells were transduced in vitro with an adenovirus encoding β-galactosidase (Ad.β-gal) over a range of viral titers, and transduced cells were identified by detection of X-gal. In vivo transduction efficiency was studied in normal and injured livers using cell isolation techniques. Nonparenchymal cells were transduced with greater frequency than hepatocytes at all adenoviral titers tested, both in vitro and in vivo. After liver injury, adenoviral transduction was reduced for all liver cell types compared with that for cells from normal livers (at all virus titers). Notably, transduction efficiency remained greater in nonparenchymal cells than in hepatocytes after liver injury. This work implies that, to achieve comparable gene expression in the injured liver, higher adenoviral titers may be required, an important consideration as gene therapy in disease states is considered.


APOPTOSIS ◽  
2008 ◽  
Vol 13 (5) ◽  
pp. 641-648 ◽  
Author(s):  
Guo-Rui Ruan ◽  
Hong-Shan Zhao ◽  
Yan Chang ◽  
Jin-Lan Li ◽  
Ya-Zhen Qin ◽  
...  
Keyword(s):  

2002 ◽  
Vol 76 (4) ◽  
pp. 1600-1609 ◽  
Author(s):  
Gudrun Schiedner ◽  
Sabine Hertel ◽  
Marion Johnston ◽  
Volker Biermann ◽  
Volker Dries ◽  
...  

ABSTRACT In high-capacity adenovirus (HC-Ad) vectors the size and/or composition of the vector genome influences vector stability during production and the expression profile following gene transfer. Typically, an HC-Ad vector will contain both a gene or an expression cassette and stuffer DNA that is required to balance the final vector genome to a size of between 27 and 36 kb. To gain an improved understanding of factors that may influence gene expression from HC-Ad vectors, we have generated a series of vectors that carry different combinations of human alpha-1 antitrypsin (hAAT) expression constructs and stuffer DNAs. Expression in vitro did not predict in vivo performance: all vectors expressed hAAT at similar levels when tested in cell culture. Hepatic expression was evaluated following in vivo gene transfer in C57BL/6J mice. hAAT levels obtained from genomic DNA were significantly higher than levels achieved with small cDNA expression cassettes. Expression was independent of the orientation and only marginally influenced by the location of the expression cassette within the vector genome. The use of lambda stuffer DNA resulted in low-level but stable expression for at least 3 months when higher doses were applied. A potential matrix attachment region element was identified within the hAAT gene and caused a 10-fold increase in expression when introduced in an HC-Ad vector genome carrying a phosphoglycerate kinase (pgk) hAAT cDNA construct. We also illustrate the influence of the promoter on anti-hAAT antibody formation in C57BL/6J mice: a human cytomegalovirus but not a pgk promoter resulted in an anti-hAAT antibody response. Thus, the overall design of HC-Ad vectors may significantly influence amounts and duration of gene expression at different levels.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyung Min Jung ◽  
Young Min Kim ◽  
Jin Lee Kim ◽  
Jae Yong Han

AbstractZebra finch is a representative animal model for studying the molecular basis of human disorders of vocal development and communication. Accordingly, various functional studies of zebra finch have knocked down or introduced foreign genes in vivo; however, their germline transmission efficiency is remarkably low. The primordial germ cell (PGC)-mediated method is preferred for avian transgenic studies; however, use of this method is restricted in zebra finch due to the lack of an efficient gene transfer method for the germline. To target primary germ cells that are difficult to transfect and manipulate, an adenovirus-mediated gene transfer system with high efficiency in a wide range of cell types may be useful. Here, we isolated and characterized two types of primary germline-competent stem cells, PGCs and spermatogonial stem cells (SSCs), from embryonic and adult reproductive tissues of zebra finch and demonstrated that genes were most efficiently transferred into these cells using an adenovirus-mediated system. This system was successfully used to generate gene-edited PGCs in vitro. These results are expected to improve transgenic zebra finch production.


1998 ◽  
Vol 72 (11) ◽  
pp. 8861-8872 ◽  
Author(s):  
Larry G. Johnson ◽  
Jennifer P. Mewshaw ◽  
Hong Ni ◽  
Theodore Friedmann ◽  
Richard C. Boucher ◽  
...  

ABSTRACT To study retroviral gene transfer to airway epithelia, we used a transient transfection technique to generate high titers (∼109 infectious units/ml after concentration) of murine leukemia virus (MuLV)-derived vectors pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G). Transformed (CFT1) and primary airway epithelial cells were efficiently transduced by a VSV-G-pseudotyped lacZ vector (HIT-LZ) in vitro. CFT1 cells and primary cystic fibrosis (CF) airway cell monolayers infected with a vector (HIT-LCFSN) containing human CF transmembrane conductance regulator (CFTR) in the absence of selection expressed CFTR, as assessed by Western blot analysis, and exhibited functional correction of CFTR-mediated Cl− secretion. In vitro studies of persistence suggested that pseudotransduction was not a significant problem with our vector preparations. In a sulfur dioxide (SO2) inhalational injury model, bromodeoxyuridine (BrdU) incorporation rates were measured and found to exceed 50% in SO2-injured murine tracheal epithelium. HIT-LZ vector (multiplicity of infection of ∼10) instilled into the SO2-injured tracheas of anesthetized mice transduced 6.1% ± 1.3% of superficial airway cells in tracheas of weanling mice (3 to 4 weeks old; n = 10), compared to 1.4 ± 0.9% in mice 5 weeks of age (n = 4) and 0.2% in mice older than 6 weeks (n = 15). No evidence for gene transfer following delivery of HIT-LZ to tracheas of either weanling or older mice not injured with SO2 was detected. Because only a small fraction of BrdU-labeled airway cells were transduced, we examined the stability of the vector. No significant loss of vector infectivity over intervals (2 h) paralleling those of in vivo protocols was detected in in vitro assays using CFT1 cells. In summary, high-titer vectors permitted complementation of defective CFTR-mediated Cl− transport in CF airway cells in vitro without selection and demonstrated that the age of the animal appeared to be a major factor affecting in vivo retroviral transduction efficiency.


Sign in / Sign up

Export Citation Format

Share Document