scholarly journals Cytogenetic profile of minimally differentiated (FAB M0) acute myeloid leukemia: correlation with clinicobiologic findings [see comments]

Blood ◽  
1995 ◽  
Vol 85 (12) ◽  
pp. 3688-3694 ◽  
Author(s):  
A Cuneo ◽  
A Ferrant ◽  
JL Michaux ◽  
M Boogaerts ◽  
H Demuynck ◽  
...  

Cytogenetic data were studied in 26 patients with de novo acute myeloid leukemia (AML) with minimal myeloid differentiation, corresponding to the M0 subtype of the French-American-British classification, in correlation with cytoimmunologic and clinical findings. Clonal abnormalities were detected in 21 cases (80.7%), 12 of which had a complex karyotype. Partial or total monosomy 5q and/or 7q was found, either as the sole aberration or in all abnormal metaphases, in 11 patients; in 8 cases, additional chromosome changes were present, including rearrangements involving 12p12–13 and 2p12–15 seen in 3 cases each. Five patients had trisomy 13 as a possible primary chromosome change; in 5 cases, nonrecurrent chromsome abnormalities were observed. Comparison of these findings with chromosome data from 42 patients with AML-M1 shows that abnormal karyotypes, complex karyotypes, unbalanced chromosome changes (-5/5q- and/or -7/7q- and +13) were observed much more frequently in AML-M0 than in AML-M1. Patients with abnormalities of chromosome 5 and/or 7 frequently showed trilineage myelodysplasia and low white blood cell count. Despite their relatively young age, complete remission was achieved in 4 of 11 patients only. Patients with +13 were elderly males with frequent professional exposure to myelotoxic agents. Unlike patients with clonal abnormalities, most AML-M0 patients with normal karyotype showed 1% to 2% peroxidase-positive blast cells at light microscopy and frequently achieved CR. It is concluded that (1) AML-M0 shows a distinct cytogenetic profile, partially recalling that of therapy-related AML, (2) different cytogenetic groups of AML-M0 can be identified showing characteristic clinicobiologic features, and (3) chromosome rearrangements may partially account for the unfavorable outcome frequently observed in these patients.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 754-754
Author(s):  
Katharina Gerstenberger ◽  
Christoph Röllig ◽  
Markus Schaich ◽  
Thomas Illmer ◽  
Uwe Platzbecker ◽  
...  

Abstract Abstract 754 Background: The key hematopoietic transcription factor RUNX1 is inactivated by several mechanisms in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), including translocations and mutations. Mutations have been reported in 10–20% of patients with AML, and appear to be associated with an inferior outcome. However, the analyzed patient populations were either small, contained highly selected patients or the spectrum of mutations investigated was limited. Thus, the information on the prevalence and the prognostic relevance of RUNX1 mutations is still incomplete. Methods: In order to study this abnormality in an unselected cohort including older patients and all karyotype abnormalities, we retrospectively analyzed DNA from 1649 newly diagnosed AML patients. The prognostic impact was studied in those 1303 patients treated within the AML96 protocol of the DSIL/SAL. Screening was performed for exons 3–8 using denaturing HPLC (dHPLC). All patients with aberrant dHPLC-profile were sequenced. Results: Overall 217 mutations were identified in 186/1649 patients (11.3%); 31 patients had two different mutations. The mutations affected the entire coding region, with a cluster in exons 3–5 coding for the RUNT-homology-Domain (RhD). The alterations consisted predominantly of point mutations, but small insertions or deletions were also found, especially in exons 7 and 8. In addition, several patients showed mutations affecting splice donor or acceptor sites. Correlation with clinical data revealed that patients with RUNX1 mutations had a higher median age than patients with wild-type RUNX1 (64 vs. 59 years; P<.001). No significant differences were found regarding other parameters, including the percentage of BM-blasts, gender, platelet or WBC counts. Mutations were observed in almost all FAB-subtypes besides M3 and M7, but as reported, they clustered in FAB M0 and M1. Consistent with the reported role of RUNX1 mutations in MDS, patients with a history of prior MDS had a rate of 20.1% compared to 9.4% in de novo AML and 12.2% in tAML (P<.001). A similar prevalence of mutations was found in patients with cytogenetic abnormalities (86/765; 11.2%) and patients with normal karyotype (84/766; 11%). A high prevalence of RUNX1-mutations was found in patients with trisomy 13, trisomy 21 and also in patients with t(9;22), whereas significantly fewer mutations were observed in good risk cytogenetics t(8;21) and inv(16). Patients with RUNX1-mutations displayed a similar prevalence of FLT3-ITD mutations but significantly less NPM1-mutations (2.2%; P<.001) and a trend for less CEBPA mutations (2.8%; P=.064). When treatment response was investigated, RUNX1-mutant patients had a significantly lower rate of complete remission after double induction, even if restricted to patients <60 yrs (67.5% vs. 49.2%; P=.006). RUNX1 mutations were also associated with inferior overall survival (OS) in all age groups analyzed, e.g. in patients age 60 and younger with normal karyotype, the median OS was 0.96 years in RUNX1 mutant compared to 1.78 years in wt patients (P=.009). In patients achieving CR, treatment failure was due to a significantly increased relapse rate. Conclusions: RUNX1 mutations can be found in a significant proportion of patients with AML. They are associated with prior MDS and older age and appear to characterize a patient group with an increased rate of treatment failure. Disclosures: Thiede: AgenDix GmbH: Equity Ownership.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1997-2004 ◽  
Author(s):  
G Del Poeta ◽  
R Stasi ◽  
G Aronica ◽  
A Venditti ◽  
MC Cox ◽  
...  

Abstract Cytofluorimetric detection of the multidrug resistance (MDR)-associated membrane protein (P-170) was performed at the time of diagnosis in 158 patients with acute myeloid leukemia using the C219 monoclonal antibody (MoAb). In 108 of these cases the JSB1 MoAb was also tested. An improved histogram subtraction analysis, based on curve fitting and statistical test was applied to distinguish antigen-positive from antigen-negative cells. A marker was considered positive when more than 20% of the cells were stained. At onset, P-170 was detected in 43% of cases with C219 and in 73% of cases with JSB1. There was a strict correlation between C219 and JSB1 positivity, as all C219+ cases were also positive for JSB1 MoAb (P < .001). No relationship was found between sex, age, organomegaly, and MDR phenotype. Significant correlation was found between CD7 and both C219 and JSB1 expression (P < .001 and .001, respectively). C219-negative phenotype was more often associated with a normal karyotype (24 of 55 with P = .030). Rhodamine 123 (Rh123) staining and flow cytometry analysis showed a significantly decreased mean fluorescence in 51 C219+ and 38 JSB1+ patients compared to 42 MDR negative ones (P < .001). The rate of first complete remission (CR) differed both between C219+ and C219- cases and between JSB+ and JSB- ones (30.9% v 71.1% and 35.4% v 93.1%, respectively, P < .001). Of the 21 C219+ patients who had yielded a first CR, 19 (90.4%) relapsed, compared with 28 of 64 (43.7%) C219- patients (P < .001). Of the 28 JSB1+ patients in first CR, 17 (60.7%) relapsed relative to 8 (29.6%) of 27 JSBI- ones (P = .021). A higher rate of relapses among MDR+ compared with MDR- patients was observed both for C219 and JSB1 MoAbs taken separately (C219 80% v 44%; JSB1 52% v 27%), with no relationship to age. The survival rates (Kaplan-Meyer method) were significantly shorter both in C219+ patients and in JSB1+ cases (P < .001). Disease-free survival curves followed this same trend. The combination (C219- JSB1+) identified a subset of patients with an intermediate outcome compared to C219 positive cases. The prognostic value of both markers (C219 and JSB1) was confirmed in multivariate analysis. These results suggest that the assessment of MDR phenotype by flow cytometry may be an important predictor of treatment outcome.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4889-4889
Author(s):  
Kalliopi N Manola ◽  
Agapi Parcharidou ◽  
Vassilios Papadakis ◽  
Maria Kalntremtziou ◽  
Chryssa Stavropoulou ◽  
...  

Abstract Acute myeloid leukemia (AML) accounting for approximately 17% of all childhood acute leukemias, arises either de novo or from a backround of myelodysplasia or previous chemotherapy. Cytogenetics is considered one of the most valuable prognostic determinants in AML while current risk–group classification in the limited cases of pediatric AML, is mainly based on cytogenetics and early treatment response. We reviewed the clinical and cytogenetic characteristics and the outcomes of 33 cases of childhood AML between 1997 and 2007 in order to investigate the incidence of the main FAB subtypes, the incidence of primary AML compared to secondary AML (s-AML) and the correlation between specific chromosome abnormalities and outcome in greek pediatric AML patients. Chromosome studies were performed on unstimulated bone marrow cells, derived from 33 pediatric AML patients, who were &lt;18 years of age at the time of diagnosis. Eighteen patients were male and 15 were female. According to FAB classification one patient was classified as M0 (3%), 13 patients as M2 (39.4%), 4 as M3 (12.12%), 4 as M5 (12.12%), 2 as M6 (6.1%) and 4 as M7 (12.12%). No patient was classified as M4 while 5 patients with s-AML (15.15%) could not be classified. The median follow-up of all patients was 57.95 months (0.03–132.47). Overal survival and event free survival were 66,7% and 75,8% respectively. Eight patients with s-AML and 25 patients with primary AML were identified. The median age of patients with s-AML at diagnosis was 9.15 years while the median age of patients with primary AML was 7.2 years. Six out of 8 patients with s-AML died at a median follow up of 11.03 months. Nineteen out of 25 patients with primary AML are alive in complete remission (CR). Cytogenetic analysis was performed at diagnosis in 32 patients and results were obtained in 30 of them. The karyotype was abnormal in 21 out of 30 patients (70%). Normal karyotype was found in 9 patients, t(8;21)(q22;q22) in 5, t(15;17)(q22;q21) in 3, t(9;11)(p22;q23) in 3, −7/del(7q) in 5, del(9q) in 3, and complex karyotype in 4 patients. Three out of 4 patients with M3 are alive in CR with a median follow-up of 98.6 months while one with s-AML-M3 died 13 days post diagnosis. Three out of five patients with M2 and t(8;21), including 1 patient with s-AML, died at a median follow-up of 4.35 months. Three out of 5 patients with −7/del(7q) had s-AML and died in less than 4 years, while the two others are alive for more than 5 years, in CR. Although all patients with M7 had complex karyotypes, they are alive after a median follow-up of 96.73 months, 3 of them in CR and 1 in relapse. These results indicate that in greek patients, the main FAB subtypes show a distribution similar to that reported in the literature with the exception of M4 which is absent in our study but with a reported incidence of 20%. Pediatric patients with s-AML are older and their outcome is poor and is related to a higher probability of poor cytogenetic features compared to primary AML patients. Interestingly all patients with M7 had a good clinical course although they exhibited complex karyotypes.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2697-2697
Author(s):  
Weng-Chi Lei ◽  
Wen-Chien Chou ◽  
Bor-Shen Ko ◽  
Hsin-An Hou ◽  
Hwei-Fang Tien

Abstract Abstract 2697 Purpose: Although the clinical and biological features of Isocitrate dehydrogenase (IDH) mutations in acute myeloid leukemia (AML) have been characterized, its stability and in vivo sufficiency of the mutation alone for leukemogenesis remain uninvestigated. Patients and Methods: Mutations of IDH and other clinically relevant genes were analyzed in the bone marrow from 446 adult patients with de novo non-M3 AML. IDH2 mutations were examined serially in 140 patients at diagnosis and after chemotherapy. Results: Among the 446 adults with de novo non-M3 AML, IDH2 R172, R140, and IDH1 R132 mutations occurred at a frequency of 2.9%, 9.2%, and 6.1%, respectively. IDH2 mutation was associated with higher platelet counts (p=0.046), intermediate-risk (p=0.002) or normal karyotype (p=0.023), and isolated +8 (p=0.014), but was inversely correlated with expression of HLA-DR (p=0.002), CD34 (p=0.039), CD15 (p=0.003), CD7 (p=0.010), and CD56 (p=0.048), and was mutually exclusive with WT1 mutation (p=0.037) and core-binding factor translocations (p=0.001). All these correlations became stronger when IDH1 and IDH2 mutations were considered together, suggesting similarity of biological roles between these 2 mutations. However, IDH2 but not IDH1 mutation conferred a better prognosis (Fig 1), especially in those with normal karyotype or intermediate cytogenetics (median overall survival: not reached vs. 58 months, p=0.044 and not reached vs. 19 months, p=0.027 for normal and intermediate karyotype group, respectively). Importantly, IDH2 but not IDH1 mutation was an independent favorable prognostic factor (HR: 0.332, 95% CI: 0.159–0.694; p=0.003). Patients with IDH2−/FLT3-ITD+ genotype had especially worse prognosis (median OS of IDH2−/FLT3-ITD+ vs. IDH2+/FLT3-ITD− group: 12 months vs. not reached; p=0.003; median OS of IDH2−/FLT3-ITD+ vs. IDH2+/FLT3-ITD+ or IDH2−/FLT3-ITD− group : 12 months vs. 35 months; p<.0001) (Fig 2A). The worse prognosis was also seen in patients with IDH−/FLT3-ITD+ genotype (Fig 2B). Serial analyses of IDH2 mutations during the clinical course of 140 patients confirmed the stability of this mutation; all the patients with IDH2 mutations at diagnosis harbored the same mutation at relapse with the exception of one patient who had extramedullary but not bone marrow relapse, while none of the IDH2-wild patients acquired this mutation at relapse. Importantly, sequential samples from two patients in long-term remission retained the original R140Q mutation while other accompanied mutations, FLT3-ITD in the first patient and NPM1 in the second, respectively, disappeared. In the first patient, the skin tissue was absent of the mutation and in the second, the mutation was restricted in myeloid cells but spared in lymphocytes indicating the mutation was acquired in these two patients. Conclusion: IDH2 mutation is a stable marker during disease evolution and confers favorable prognosis. FLT3-ITD combined with wild type IDH2 exerted synergistic negative impact on survival. IDH2 mutation alone is insufficient for leukemogenesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3596-3596
Author(s):  
Georgia Voutiadou ◽  
Konstantina Kotta ◽  
Barbara Tachynopoulou ◽  
Apostolia Papalexandri ◽  
Chryssanthi Vadikolia ◽  
...  

Abstract Abstract 3596 Immune phenotyping plays a critical role in the diagnosis and classification of acute leukemia. Several studies have reported a variable proportion of patients with acute myeloid leukemia (AML) expressing lymphoid-associated antigens (LAA). The exact frequency and true clinical significance of this phenomenon remains undefined due to inconsistencies between series, likely related to methodological aspects or potential case selection biases. We retrospectively evaluated the expression of LAA in blast cells from 278 consecutive and unselected patients with AML diagnosed in our Department between 2002 and 2010. The patient cohort included 168 males and 110 females with a median age of 61 years (range, 10–88); 146/278 cases were above the age of 60. Within this cohort, 190 cases (68%) had de novo AML, whereas the remaining 88 cases (32%) concerned secondary AML (sAML) to either MDS (n=80) or other non-hematologic malignancies (n=8). Patients were treated uniformly according to age with Aracytin/Idarubicin induction regimens (“3+7” or “2+5” for ages \q60 or ≥60, respectively). The immunophenotype was determined by flow cytometric analysis of (mainly) bone marrow aspirate and/or peripheral blood samples utilizing a primary CD45/side scatter (SSC) gating procedure with antibodies against CD7, CD13, CD19, CD33, CD4, CD10, CD34, CD117, CD64, HLA-DR, CD20, CD2, CD15, CD56, CD14, CD8, MPO, CD3, CD79a, CD22, TdT and lysozyme; a cut-off value for positivity of 20% was adopted. Overall, we identified 153/278 cases (55%) expressing at least one LAA. The most commonly expressed LAAs were CD4 (outside AML with monocytic differentiation), CD56, CD7, CD2, CD10 and CD79a (in 39%, 33%, 29%, 14%, 10% and 8% of LAA+ AML cases, respectively); interestingly, all CD79a-positive cases co-expressed at least one more LAA. A significant association was identified between LAA expression and cytogenetic profile: in particular, at least one LAA was detected in 37/50 cases (74%) with adverse cytogenetics (SWOG unfavorable and/or monosomal karyotype), compared to 24/41 (58%) cytogenetically favorable cases and 68/134 (51%) cytogenetically intermediate risk cases (p=0.01). No other statistically significant associations were found for LAA expression (positive vs. negative) in respect to age and complete remission (CR) rate. Furthermore, the frequency of LAA-positive cases was identical (55%) in both de novo AML (105/190 cases) and sAML (48/88 cases). Monoparametric statistical analysis was also performed individually for each of the six more frequent LAAs. Significant associations (p<0.05) were identified between: (i) CD7 expression and adverse cytogenetics; (ii) CD10 expression and adverse cytogenetics as well as failure to achieve CR, at both cohort level as well as patients \q60 years with de novo AML; and (iii) CD2 expression and shorter overall and disease-free survival (DFS and OS, respectively). Cox-multivariate analysis identified CD2 expression in addition to advanced age, sAML and adverse cytogenetic profile as negative prognostic indicators (p=0.05) for both DFS and OS. In conclusion, expression of LAAs is frequent in AML, among both de novo AML and sAML cases, and significantly associated with adverse cytogenetics. Although the negative prognostic impact of CD2 expression is noteworthy, however, the precise prognostic implications of the expression of individual LAAs are hard to define on single institution retrospective series and will require evaluation in large prospective and well-controlled studies. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 7052-7052
Author(s):  
B. C. Medeiros ◽  
J. R. Gotlib ◽  
S. E. Coutre ◽  
C. Jones ◽  
S. A. Khan ◽  
...  

7052 Background: High treatment-related mortality and low response rates often discourage elderly patients with acute myeloid leukemia from receiving treatment. Previous data demonstrate that only patients lacking expression of O6-alkylguanine-DNA alkyltransferase (AGAT) in leukemic blasts are sensitive to temozolomide. Protracted exposure to low doses of temozolomide can significantly inhibit AGAT enzymatic activity. Methods: Phase II clinical trial of tailored temozolomide therapy to high-risk AML patients according to AGAT methylation promoter status. Patients demonstrating evidence of AGAT promoter methylation were stratified to conventional doses of temozolomide at 200 mg/m2 orally x 7 days. Patients demonstrating lack of AGAT promoter methylation (unmethylated) received protracted doses of temozolomide (100 mg/m2 orally x 14 days) followed by conventional doses of temozolomide. Patients who achieved CR were given up to 5 consolidation treatments. Results: Fifteen patients have completed treatment to date. The median age was 78 (68–83) and nine were male. De novo AML was diagnosed in eight patients and five patients had s-AML. Nine patients had a normal karyotype and three patients had a complex karyotype. Two patients had only a NPM1 mutation and one had NPM1mut/FLT3-ITD. In 13 patients, the AGAT promoter was found to be unmethylated. AGAT protein was present in 5/11 patients. All patients had an intact mismatch repair pathway. Thirteen patients had HCT-CI scores of 0–2. Six patients (6/13) achieved a complete remission (CR) after 1 cycle of therapy (1/2 for patients with methylated and 5/11 for patients with unmethylated AGAT promoter). Nonhematologic toxicities were minimal. Drug-related hematologic toxicities were difficult to distinguish from disease-related cytopenias. Three patients remain in CR with a median duration of 22 weeks (14–36 weeks). Seven patients have died from disease progression, while two patients died of neutropenic sepsis (early deaths). With a median follow-up of 38 weeks (10–48), the median overall survival for the entire population is 12 weeks (3.5 - 38) weeks (responders 26.5 weeks). Conclusions: These preliminary results suggest that temozolomide therapy may be individually tailored to elderly patients with AML according to AGAT promoter status. [Table: see text]


Hematology ◽  
2012 ◽  
Vol 17 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Abir Gmidène ◽  
Hlima Sennana ◽  
Ines Wahchi ◽  
Yosra Ben Youssef ◽  
Ramzi Jeddi ◽  
...  

Leukemia ◽  
2009 ◽  
Vol 23 (10) ◽  
pp. 1801-1806 ◽  
Author(s):  
Y Cheng ◽  
Y Wang ◽  
H Wang ◽  
Z Chen ◽  
J Lou ◽  
...  

Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1997-2004 ◽  
Author(s):  
G Del Poeta ◽  
R Stasi ◽  
G Aronica ◽  
A Venditti ◽  
MC Cox ◽  
...  

Cytofluorimetric detection of the multidrug resistance (MDR)-associated membrane protein (P-170) was performed at the time of diagnosis in 158 patients with acute myeloid leukemia using the C219 monoclonal antibody (MoAb). In 108 of these cases the JSB1 MoAb was also tested. An improved histogram subtraction analysis, based on curve fitting and statistical test was applied to distinguish antigen-positive from antigen-negative cells. A marker was considered positive when more than 20% of the cells were stained. At onset, P-170 was detected in 43% of cases with C219 and in 73% of cases with JSB1. There was a strict correlation between C219 and JSB1 positivity, as all C219+ cases were also positive for JSB1 MoAb (P < .001). No relationship was found between sex, age, organomegaly, and MDR phenotype. Significant correlation was found between CD7 and both C219 and JSB1 expression (P < .001 and .001, respectively). C219-negative phenotype was more often associated with a normal karyotype (24 of 55 with P = .030). Rhodamine 123 (Rh123) staining and flow cytometry analysis showed a significantly decreased mean fluorescence in 51 C219+ and 38 JSB1+ patients compared to 42 MDR negative ones (P < .001). The rate of first complete remission (CR) differed both between C219+ and C219- cases and between JSB+ and JSB- ones (30.9% v 71.1% and 35.4% v 93.1%, respectively, P < .001). Of the 21 C219+ patients who had yielded a first CR, 19 (90.4%) relapsed, compared with 28 of 64 (43.7%) C219- patients (P < .001). Of the 28 JSB1+ patients in first CR, 17 (60.7%) relapsed relative to 8 (29.6%) of 27 JSBI- ones (P = .021). A higher rate of relapses among MDR+ compared with MDR- patients was observed both for C219 and JSB1 MoAbs taken separately (C219 80% v 44%; JSB1 52% v 27%), with no relationship to age. The survival rates (Kaplan-Meyer method) were significantly shorter both in C219+ patients and in JSB1+ cases (P < .001). Disease-free survival curves followed this same trend. The combination (C219- JSB1+) identified a subset of patients with an intermediate outcome compared to C219 positive cases. The prognostic value of both markers (C219 and JSB1) was confirmed in multivariate analysis. These results suggest that the assessment of MDR phenotype by flow cytometry may be an important predictor of treatment outcome.


Sign in / Sign up

Export Citation Format

Share Document