scholarly journals Monoclonal Lym-1 antibody-dependent lysis of B-lymphoblastoid tumor targets by human complement and cytokinine-exposed mononuclear and neutrophilic polymorphonuclear leukocytes

Blood ◽  
1996 ◽  
Vol 87 (12) ◽  
pp. 5171-5178 ◽  
Author(s):  
L Ottonello ◽  
P Morone ◽  
P Dapino ◽  
F Dallegri

Lym-1 is a murine IgG2a monoclonal antibody that recognizes a polymorphic variant of HLA-DR antigens on malignant B cells, with minimal cross-reactivity with normal tissues. Because it can be safely administered in vivo, a detailed knowledge of its ability to recruit and trigger the antitumor immune effector systems is required to optimize potential serotherapeutic approaches in B-lymphoma patients. By using Raji cells as a model of B-lymphoma targets, we found that Lym- 1 activates complement-mediated lysis efficiently. Moreover, Lym-1 was capable of triggering the antibody-dependent cellular cytolysis (ADCC) by peripheral blood mononuclear cells (MNCs). On the contrary, it failed to trigger neutrophilic polymorphonuclear leukocyte (PMN)- mediated ADCC activity. In an attempt to enhance Lym-1 ADCC by MNCs and PMNs, nine biologic response modifiers were tested. MNC-mediated Lym-1 ADCC was significantly stimulated by interleukin-2 (IL-2) and unaffected by other mediators, including gamma-interferon (gamma-IFN), tumor necrosis factor a (TNFalpha), and granulocyte-macrophage colony- stimulating factor (GM-CSF). On the other hand, PMN-mediated Lym-1 ADCC was induced or significantly augmented by various cytokines, such as GM- CSF, TNFalpha, and gamma-IFN, and chemotaxins, such as formyl peptides (FMLP), complement fragment C5a, and IL-8. Both MNC- and PMN-mediated ADCC was unaffected by granulocyte colony-stimulating factor (G- CSF) and insulin-like growth factor-1 (IGF-1). Finally, only GM-CSF and TNFalpha augmented the number of PMNs actually engaged in the binding of Raji target cells. The findings presented here, in particular those showing stimulatory activity of biologic response modifiers, may inspire new attempts for developing Lym-1 antibody-based approaches to the therapy of B lymphomas.

Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 1981-1987 ◽  
Author(s):  
MR Schaafsma ◽  
JH Falkenburg ◽  
JE Landegent ◽  
N Duinkerken ◽  
S Osanto ◽  
...  

Abstract Recombinant human interleukin-2 (IL-2), administered to cancer patients by continuous intravenous (IV) infusion (3 x 10(6) U/m2/d), was found to induce the in vivo production of colony-stimulating factors (CSF). Plasma obtained from patients during IL-2 treatment stimulated in vitro colony formation of normal human bone marrow cells, depleted of mononuclear phagocytes and T lymphocytes. This colony-stimulating activity (CSA) was identified as IL-5, granulocyte-macrophage CSF (GM- CSF), and macrophage CSF (M-CSF), by the ability of specific antibodies against these factors to neutralize their effects. The presence of IL-2- induced GM-CSF and M-CSF was also demonstrated by specific radioimmunoassays. During IL-2 treatment, plasma also contained detectable levels of IL-6, which was measured in a bioassay. Using a cDNA-polymerase chain reaction (PCR) with specific primer sets for the various CSF, we showed that IL-2 treatment induced the expression of mRNA for M-CSF, GM-CSF, IL-3, and IL-5, but not for granulocyte CSF (G- CSF) in peripheral blood mononuclear cells, suggesting differential expression of CSF in vivo in response to IL-2. Furthermore, no negative regulators of hematopoiesis, such as interferon gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF-alpha), were found in plasma. These data illustrate that in vivo administration of high-dose IL-2 may result in a stimulatory effect on hematopoiesis. The induction of detectable levels of IL-5 and GM-CSF in the circulation may explain the eosinophilia and neutrophilia observed in these patients.


Blood ◽  
1998 ◽  
Vol 92 (6) ◽  
pp. 1967-1972 ◽  
Author(s):  
Klaus Geissler ◽  
Leopold Öhler ◽  
Manuela Födinger ◽  
Eva Kabrna ◽  
Marietta Kollars ◽  
...  

Abstract In polycythemia vera (PV) erythroid colonies that grow in vitro in the absence of exogenous erythropoietin (EPO) arise from the abnormal clone that is responsible for overproduction of red blood cells. Although the mechanism of autonomous formation of burst-forming units-erythroid (BFU-E) is not fully understood, a spontaneous release of growth regulatory molecules by PV cells and/or by accessory cells is likely to be involved. Because of its cytokine synthesis inhibiting action, interleukin-10 (IL-10) could be a potentially useful molecule to modulate abnormal erythropoiesis in PV. We studied the effect of recombinant human IL-10 on the EPO-independent growth of erythroid bursts derived from peripheral blood mononuclear cells (PBMNCs) of patients with PV. IL-10 showed a profound, dose-dependent, and specific inhibitory effect on autonomous BFU-E formation. Ten nanograms per milliliter of IL-10 significantly suppressed spontaneous growth of erythroid colonies in methylcellulose in five of five PV patients tested with a mean inhibition by 81% (range, 72-94). To elucidate the possible mechanism of the inhibitory action of IL-10 we further studied the effect of anticytokine antibodies on autonomous BFU-E growth and the ability of exogenous cytokines to restore IL-10–induced suppression of erythroid colony growth. Among a panel of growth regulatory factors tested (granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-3, granulocyte colony-stimulating factor, stem cell factor, and insulin-like growth factor-1) GM-CSF was the only molecule for which both an inhibition of spontaneous BFU-E formation by its respective antibody as well as a significant restimulation of erythroid colonies in IL-10-treated cultures by exogenous addition was found. Moreover, inhibition of GM-CSF production by IL-10 was shown in PV PBMNCs at the mRNA level. Our data indicate that autonomous BFU-E growth in PV can be profoundly inhibited by IL-10 and that this inhibitory effect seems to be at least in part secondary to suppression of endogenous GM-CSF production. © 1998 by The American Society of Hematology.


Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 1981-1987
Author(s):  
MR Schaafsma ◽  
JH Falkenburg ◽  
JE Landegent ◽  
N Duinkerken ◽  
S Osanto ◽  
...  

Recombinant human interleukin-2 (IL-2), administered to cancer patients by continuous intravenous (IV) infusion (3 x 10(6) U/m2/d), was found to induce the in vivo production of colony-stimulating factors (CSF). Plasma obtained from patients during IL-2 treatment stimulated in vitro colony formation of normal human bone marrow cells, depleted of mononuclear phagocytes and T lymphocytes. This colony-stimulating activity (CSA) was identified as IL-5, granulocyte-macrophage CSF (GM- CSF), and macrophage CSF (M-CSF), by the ability of specific antibodies against these factors to neutralize their effects. The presence of IL-2- induced GM-CSF and M-CSF was also demonstrated by specific radioimmunoassays. During IL-2 treatment, plasma also contained detectable levels of IL-6, which was measured in a bioassay. Using a cDNA-polymerase chain reaction (PCR) with specific primer sets for the various CSF, we showed that IL-2 treatment induced the expression of mRNA for M-CSF, GM-CSF, IL-3, and IL-5, but not for granulocyte CSF (G- CSF) in peripheral blood mononuclear cells, suggesting differential expression of CSF in vivo in response to IL-2. Furthermore, no negative regulators of hematopoiesis, such as interferon gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF-alpha), were found in plasma. These data illustrate that in vivo administration of high-dose IL-2 may result in a stimulatory effect on hematopoiesis. The induction of detectable levels of IL-5 and GM-CSF in the circulation may explain the eosinophilia and neutrophilia observed in these patients.


1990 ◽  
Vol 172 (1) ◽  
pp. 399-402 ◽  
Author(s):  
A P Limaye ◽  
J S Abrams ◽  
J E Silver ◽  
E A Ottesen ◽  
T B Nutman

Production of the eosinophilogenic cytokines interleukin 3 (IL-3), granulocyte/macrophage colony-stimulating factor (GM-CSF), and IL-5 by mitogen-stimulated peripheral blood mononuclear cells was compared between 11 noneosinophilic individuals and seven patients with helminth-induced eosinophilia. Both the kinetics and quantities of IL-3 and GM-CSF were similar in the two groups. In contrast, IL-5 production at both the protein and the mRNA level was markedly greater in the eosinophilic patients, an observation suggesting that IL-5 may be particularly important in mediating the selective eosinophilia seen in filarial and other helminth infections.


Blood ◽  
1998 ◽  
Vol 92 (6) ◽  
pp. 1967-1972
Author(s):  
Klaus Geissler ◽  
Leopold Öhler ◽  
Manuela Födinger ◽  
Eva Kabrna ◽  
Marietta Kollars ◽  
...  

In polycythemia vera (PV) erythroid colonies that grow in vitro in the absence of exogenous erythropoietin (EPO) arise from the abnormal clone that is responsible for overproduction of red blood cells. Although the mechanism of autonomous formation of burst-forming units-erythroid (BFU-E) is not fully understood, a spontaneous release of growth regulatory molecules by PV cells and/or by accessory cells is likely to be involved. Because of its cytokine synthesis inhibiting action, interleukin-10 (IL-10) could be a potentially useful molecule to modulate abnormal erythropoiesis in PV. We studied the effect of recombinant human IL-10 on the EPO-independent growth of erythroid bursts derived from peripheral blood mononuclear cells (PBMNCs) of patients with PV. IL-10 showed a profound, dose-dependent, and specific inhibitory effect on autonomous BFU-E formation. Ten nanograms per milliliter of IL-10 significantly suppressed spontaneous growth of erythroid colonies in methylcellulose in five of five PV patients tested with a mean inhibition by 81% (range, 72-94). To elucidate the possible mechanism of the inhibitory action of IL-10 we further studied the effect of anticytokine antibodies on autonomous BFU-E growth and the ability of exogenous cytokines to restore IL-10–induced suppression of erythroid colony growth. Among a panel of growth regulatory factors tested (granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-3, granulocyte colony-stimulating factor, stem cell factor, and insulin-like growth factor-1) GM-CSF was the only molecule for which both an inhibition of spontaneous BFU-E formation by its respective antibody as well as a significant restimulation of erythroid colonies in IL-10-treated cultures by exogenous addition was found. Moreover, inhibition of GM-CSF production by IL-10 was shown in PV PBMNCs at the mRNA level. Our data indicate that autonomous BFU-E growth in PV can be profoundly inhibited by IL-10 and that this inhibitory effect seems to be at least in part secondary to suppression of endogenous GM-CSF production. © 1998 by The American Society of Hematology.


Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4269-4277 ◽  
Author(s):  
Y Suen ◽  
SM Lee ◽  
J Schreurs ◽  
E Knoppel ◽  
MS Cairo

We have previously shown that protein production and mRNA expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), and interleukin-3 are decreased in stimulated mononuclear cells (MNCs) from human umbilical cord compared with adult peripheral blood. These deficiencies may contribute to the increased susceptibility of neonates to infection. Macrophage colony- stimulating factor (M-CSF) regulates the proliferation, differentiation, and functional activation of monocytes. In the present study, we compared the regulation of M-CSF gene expression and protein production from stimulated cord and adult MNCs. Upon adhesion to tissue culture flasks, both cord and adult MNCs constitutively expressed M-CSF mRNA. In response to both adhesion and recombinant human GM-CSF (rhGM- CSF) stimulation for 120 hours, radioimmunoassays and bioassays showed that cord MNCs produced twofold to threefold less M-CSF protein compared with adult MNCs. Northern blot analysis also showed a fourfold decrease in M-CSF mRNA expression in both unstimulated and GM-CSF- induced cord versus adult MNCs. M-CSF mRNA expression in both cord and adult MNCs peaked between 16 and 24 hours and decreased to normal levels by 48 hours. We next determined the relative rates of transcription of the M-CSF gene by nuclear run-on assays in both cord and adult MNCs. The basal level signal of the M-CSF gene was similar between cord and adult MNCs. The transcriptional rate after stimulation with rhGM-CSF appeared to increase to a similar extent in both cord and adult MNCs (130% +/- 10% v 150% +/- 15%, C v A, n = 3, mean +/- SD). The comparative stability of M-CSF mRNA from cord versus adult MNCs was next determined by actinomycin D decay studies. The half-life of M-CSF mRNA from stimulated adult MNCs was 70 +/- 7.0 minutes (n = 4) compared with 47 +/- 2.8 minutes (n = 3) from stimulated cord MNCs (mean +/- SD, P < .05). To further determine the involvement of labile protein factors in posttranscriptional regulation, cord and adult MNCs were incubated with cycloheximide (CHX; 10 micrograms/mL). There was a significant increase in the induction of M-CSF mRNA by CHX treatment in both cord and adult MNCs. The increase of M-CSF mRNA induction by CHX was 2.5 times higher in cord MNCs compared with that in adult MNCs. These results suggest that there are one or more labile proteins that regulate M-CSF transcript stability in both cord and adult MNCs.(ABSTRACT TRUNCATED AT 400 WORDS)


1990 ◽  
Vol 10 (3) ◽  
pp. 1281-1286 ◽  
Author(s):  
R Schreck ◽  
P A Baeuerle

The expression of the gene encoding the granulocyte-macrophage colony-stimulating factor (GM-CSF) is induced upon activation of T cells with phytohemagglutinin and active phorbolester and upon expression of tax1, a transactivating protein of the human T-cell leukemia virus type I. The same agents induce transcription from the interleukin-2 receptor alpha-chain and interleukin-2 genes, depending on promoter elements that bind the inducible transcription factor NF-kappa B (or an NF-kappa B-like factor). We therefore tested the possibility that the GM-CSF gene is also regulated by a cognate motif for the NF-kappa B transcription factor. A recent functional analysis by Miyatake et al. (S. Miyatake, M. Seiki, M. Yoshida, and K. Arai, Mol. Cell. Biol. 8:5581-5587, 1988) described a short promoter region in the GM-CSF gene that conferred strong inducibility by T-cell-activating signals and tax1, but no NF-kappa B-binding motifs were identified. Using electrophoretic mobility shift assays, we showed binding of purified human NF-kappa B and of the NF-kappa B activated in Jurkat T cells to an oligonucleotide comprising the GM-CSF promoter element responsible for mediating responsiveness to T-cell-activating signals and tax1. As shown by a methylation interference analysis and oligonucleotide competition experiments, purified NF-kappa B binds at positions -82 to -91 (GGGAACTACC) of the GM-CSF promoter sequence with an affinity similar to that with which it binds to the biologically functional kappa B motif in the beta interferon promoter (GGGAAATTCC). Two kappa B-like motifs at positions -98 to -108 of the GM-CSF promoter were also recognized but with much lower affinities. Our data provide strong evidence that the expression of the GM-CSF gene following T-cell activation is controlled by binding of the NF-kappa B transcription factor to a high-affinity binding site in the GM-CSF promoter.


Sign in / Sign up

Export Citation Format

Share Document