scholarly journals Telomerase activation in normal B lymphocytes and non-Hodgkin's lymphomas

Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 222-229 ◽  
Author(s):  
KF Norrback ◽  
K Dahlenborg ◽  
R Carlsson ◽  
G Roos

Activation of telomerase seems to be a prerequisite for immortalization and is found in permanent cell lines and most malignant tumors. Normal somatic cells are generally telomerase negative, except for bone marrow stem cells. Weak activity is also present in peripheral blood cells. In the present study strong telomerase activity was demonstrated in vivo in normal mature cells of the immune system, as well as in malignant lymphomas. Benign lymph nodes had lower telomerase activity than benign tonsils, which exhibited intermediate to high activity comparable with findings in malignant lymphomas. In benign tonsils the activity seemed to be restricted to germinal center B cells. In benign lymphoid tissues telomerase activity correlated with B-cell numbers and cell proliferation, but this was not observed in the lymphoma group. High- grade lymphomas exhibited higher levels of telomerase compared with low- grade cases. The data showed that in vivo activation of telomerase is a characteristic feature of germinal center B cells. Different signals for activation of telomerase are likely to exist, one of them being immune stimulation. The data suggest that telomerase activity in malignant lymphomas can be explained by an “induction and retention” model, ie, transformation occurs in a normal, mature B cell with reactivated telomerase, which is retained in the neoplastic clone.

Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 222-229 ◽  
Author(s):  
KF Norrback ◽  
K Dahlenborg ◽  
R Carlsson ◽  
G Roos

Abstract Activation of telomerase seems to be a prerequisite for immortalization and is found in permanent cell lines and most malignant tumors. Normal somatic cells are generally telomerase negative, except for bone marrow stem cells. Weak activity is also present in peripheral blood cells. In the present study strong telomerase activity was demonstrated in vivo in normal mature cells of the immune system, as well as in malignant lymphomas. Benign lymph nodes had lower telomerase activity than benign tonsils, which exhibited intermediate to high activity comparable with findings in malignant lymphomas. In benign tonsils the activity seemed to be restricted to germinal center B cells. In benign lymphoid tissues telomerase activity correlated with B-cell numbers and cell proliferation, but this was not observed in the lymphoma group. High- grade lymphomas exhibited higher levels of telomerase compared with low- grade cases. The data showed that in vivo activation of telomerase is a characteristic feature of germinal center B cells. Different signals for activation of telomerase are likely to exist, one of them being immune stimulation. The data suggest that telomerase activity in malignant lymphomas can be explained by an “induction and retention” model, ie, transformation occurs in a normal, mature B cell with reactivated telomerase, which is retained in the neoplastic clone.


Blood ◽  
1995 ◽  
Vol 86 (1) ◽  
pp. 45-53 ◽  
Author(s):  
G Cattoretti ◽  
CC Chang ◽  
K Cechova ◽  
J Zhang ◽  
BH Ye ◽  
...  

Structural alterations of the 5′ noncoding region of the BCL-6 gene have been found in 40% of diffuse large cell lymphoma (DLCL) and 5% to 10% of follicular lymphomas (FL), suggesting that deregulated BCL-6 expression may play a role in lymphomagenesis. Nucleotide sequencing of BCL-6 cDNA predicted a protein containing six zinc-finger domains, suggesting that it may function as a transcription factor. Using antisera raised against N- and C-terminal BCL-6 synthetic oligopeptides in immunoprecipitation, immunoblot, and immunocytochemical assays, this study identifies the BCL-6 gene product as a 95-kD nuclear protein. Western blot analysis of human tumor cell lines representative of various hematopoietic lineages/stages of differentiation showed that the BCL-6 protein is predominantly expressed in the B-cell lineage where it was found in mature B cells. Immunohistochemical analysis of normal human lymphoid tissues indicated that BCL-6 expression is topographically restricted to germinal centers including all centroblasts and centrocytes. The BCL-6 protein was also detectable in inter- and intra-follicular CD4+ T cells, but not in other follicular components including mantle-zone B cells, plasma cells, dendritic cells, and macrophages. Immunohistochemical analysis of DLCL and FL biopsy samples showed that the BCL-6 protein is detectable in these tumors independent of the presence of BCL-6 gene rearrangements. These results indicate that the expression of the BCL-6 gene is specifically regulated during B-cell differentiation and suggest a role for BCL-6 in germinal center development or function. Because DLCL derive from germinal-center B cells, deregulated BCL-6 expression may contribute to lymphomagenesis by preventing postgerminal center differentiation.


2019 ◽  
Vol 47 (20) ◽  
pp. 10612-10627 ◽  
Author(s):  
Kristy R Stengel ◽  
Srividya Bhaskara ◽  
Jing Wang ◽  
Qi Liu ◽  
Jacob D Ellis ◽  
...  

Abstract Histone deacetylase 3 (Hdac3) is a target of the FDA approved HDAC inhibitors, which are used for the treatment of lymphoid malignancies. Here, we used Cd19-Cre to conditionally delete Hdac3 to define its role in germinal center B cells, which represent the cell of origin for many B cell malignancies. Cd19-Cre-Hdac3−/− mice showed impaired germinal center formation along with a defect in plasmablast production. Analysis of Hdac3−/− germinal centers revealed a reduction in dark zone centroblasts and accumulation of light zone centrocytes. RNA-seq revealed a significant correlation between genes up-regulated upon Hdac3 loss and those up-regulated in Foxo1-deleted germinal center B cells, even though Foxo1 typically activates transcription. Therefore, to determine whether gene expression changes observed in Hdac3−/− germinal centers were a result of direct effects of Hdac3 deacetylase activity, we used an HDAC3 selective inhibitor and examined nascent transcription in germinal center-derived cell lines. Transcriptional changes upon HDAC3 inhibition were enriched for light zone gene signatures as observed in germinal centers. Further comparison of PRO-seq data with ChIP-seq/exo data for BCL6, SMRT, FOXO1 and H3K27ac identified direct targets of HDAC3 function including CD86, CD83 and CXCR5 that are likely responsible for driving the light zone phenotype observed in vivo.


2016 ◽  
Vol 113 (14) ◽  
pp. E2039-E2046 ◽  
Author(s):  
Daniel J. Hodson ◽  
Arthur L. Shaffer ◽  
Wenming Xiao ◽  
George W. Wright ◽  
Roland Schmitz ◽  
...  

The requirement for the B-cell transcription factor OCT2 (octamer-binding protein 2, encoded by Pou2f2) in germinal center B cells has proved controversial. Here, we report that germinal center B cells are formed normally after depletion of OCT2 in a conditional knockout mouse, but their proliferation is reduced and in vivo differentiation to antibody-secreting plasma cells is blocked. This finding led us to examine the role of OCT2 in germinal center-derived lymphomas. shRNA knockdown showed that almost all diffuse large B-cell lymphoma (DLBCL) cell lines are addicted to the expression of OCT2 and its coactivator OCA-B. Genome-wide chromatin immunoprecipitation (ChIP) analysis and gene-expression profiling revealed the broad transcriptional program regulated by OCT2 that includes the expression of STAT3, IL-10, ELL2, XBP1, MYC, TERT, and ADA. Importantly, genetic alteration of OCT2 is not a requirement for cellular addiction in DLBCL. However, we detected amplifications of the POU2F2 locus in DLBCL tumor biopsies and a recurrent mutation of threonine 223 in the DNA-binding domain of OCT2. This neomorphic mutation subtly alters the DNA-binding preference of OCT2, leading to the transactivation of noncanonical target genes including HIF1a and FCRL3. Finally, by introducing mutations designed to disrupt the OCT2–OCA-B interface, we reveal a requirement for this protein–protein interface that ultimately might be exploited therapeutically. Our findings, combined with the predominantly B-cell–restricted expression of OCT2 and the absence of a systemic phenotype in our knockout mice, suggest that an OCT2-targeted therapeutic strategy would be efficacious in both major subtypes of DLBCL while avoiding systemic toxicity.


Blood ◽  
2012 ◽  
Vol 119 (12) ◽  
pp. 2819-2828 ◽  
Author(s):  
Mike Recher ◽  
Siobhan O. Burns ◽  
Miguel A. de la Fuente ◽  
Stefano Volpi ◽  
Carin Dahlberg ◽  
...  

Abstract Wiskott Aldrich syndrome (WAS) is caused by mutations in the WAS gene that encodes for a protein (WASp) involved in cytoskeleton organization in hematopoietic cells. Several distinctive abnormalities of T, B, and natural killer lymphocytes; dendritic cells; and phagocytes have been found in WASp-deficient patients and mice; however, the in vivo consequence of WASp deficiency within individual blood cell lineages has not been definitively evaluated. By conditional gene deletion we have generated mice with selective deficiency of WASp in the B-cell lineage (B/WcKO mice). We show that this is sufficient to cause a severe reduction of marginal zone B cells and inability to respond to type II T-independent Ags, thereby recapitulating phenotypic features of complete WASp deficiency. In addition, B/WcKO mice showed prominent signs of B-cell dysregulation, as indicated by an increase in serum IgM levels, expansion of germinal center B cells and plasma cells, and elevated autoantibody production. These findings are accompanied by hyperproliferation of WASp-deficient follicular and germinal center B cells in heterozygous B/WcKO mice in vivo and excessive differentiation of WASp-deficient B cells into class-switched plasmablasts in vitro, suggesting that WASp-dependent B cell–intrinsic mechanisms critically contribute to WAS-associated autoimmunity.


Blood ◽  
1996 ◽  
Vol 87 (2) ◽  
pp. 465-471 ◽  
Author(s):  
B Falini ◽  
B Bigerna ◽  
L Pasqualucci ◽  
M Fizzotti ◽  
MF Martelli ◽  
...  

The BCL-6 gene encoding a nuclear-located Kruppel-type zinc finger protein is rearranged in about 30% diffuse large B-cell lymphomas and is expressed predominantly in normal germinal center B cells and related lymphomas. These findings suggest that BCL-6 may play a role in regulating differentiation of normal germinal center B cells and that its deregulated expression caused by rearrangements may contribute to lymphomagenesis. This prompted us to investigate the expression of the BCL-6 protein in Hodgkin's disease (HD), focusing on the nodular lymphocyte predominance subtype (NLPHD), which differs from classical HD by virtue of the B-cell nature of the malignant cell population (so- called L&H cells) and its relationship with germinal centers. Forty-one HD samples (19 NLPHD, 12 nodular sclerosis, and 10 mixed cellularity) were immunostained with the monoclonal antibodies PG-B6 and PG-B6p that react with a fixative-sensitive and a formalin-resistant epitope on the aminoterminal region of the BCL-6 gene product, respectively. Strong nuclear positivity for the BCL-6 protein was detected in tumor (L&H) cells in all cases of NLPHD. In contrast, BCL-6 was expressed only in a small percentage of Hodgkin and Reed-Sternberg cells in about 30% of classical HD cases. Notably, the nuclei of reactive CD3+/CD4+ T cells nearby to and rosetting around L&H cells in NLPHD were also strongly BCL-6+, but lacked CD40 ligand (CD40L) expression. This staining pattern clearly differed from that of classical HD, whose cellular background was made up of CD3+/CD4+ T cells showing the BCL-6-/CD40L+ phenotype. These results further support the concept that NLPHD is an histogenetically distinct, B-cell-derived subtype of HD and suggest a role for BCL-6 in its development.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3817-3825 ◽  
Author(s):  
Stanislaw Krajewski ◽  
Randy D. Gascoyne ◽  
Juan M. Zapata ◽  
Maryla Krajewska ◽  
Shinichi Kitada ◽  
...  

Immunohistochemical analysis of the apoptosis-effector protease CPP32 (Caspase-3) in normal lymph nodes, tonsils, and nodes affected with reactive hyperplasia (n = 22) showed strong immunoreactivity in the apoptosis-prone germinal center B-lymphocytes of secondary follicles, but little or no reactivity in the surrounding long-lived mantle zone lymphocytes. Immunoblot analysis of fluorescence-activated cell sorted germinal center and mantle zone B cells supported the immunohistochemical results. In 22 of 27 (81%) follicular small cleaved cell non-Hodgkin's B-cell lymphomas, the CPP32-immunopositive germinal center lymphocytes were replaced by CPP32-negative tumor cells. In contrast, the large cell component of follicular mixed cells (FMs) and follicular large cell lymphomas (FLCLs) was strongly CPP32 immunopositive in 12 of 17 (71%) and in 8 of 14 (57%) cases, respectively, whereas the residual small-cleaved cells were poorly stained for CPP32 in all FLCLs and in 12 of 17 (71%) FMs, suggesting that an upregulation of CPP32 immunoreactivity occurred during progression. Similarly, cytosolic immunostaining for CPP32 was present in 10 of 12 (83%) diffuse large cell lymphomas (DLCLs) and 2 of 3 diffuse mixed B-cell lymphomas (DMs). Immunopositivity for CPP32 was also found in the majority of other types of non-Hodgkin's lymphomas studied. Plasmacytomas were CPP32 immunonegative in 4 of 12 (33%) cases, in contrast to normal plasma cells, which uniformly contained intense CPP32 immunoreactivity, implying downregulation of CPP32 in a subset of these malignancies. All 12 peripheral blood B-cell chronic lymphocyte leukemia specimens examined were CPP32 immunopositive, whereas 3 of 3 small lymphocytic lymphomas were CPP32 negative, suggesting that CPP32 expression may vary depending on the tissue compartment in which these neoplastic B cells reside. The results show dynamic regulation of CPP32 expression in normal and malignant lymphocytes.


2002 ◽  
Vol 88 (5) ◽  
pp. 400-406 ◽  
Author(s):  
Salvatore De Vita ◽  
Valli De Re ◽  
Domenico Sansonno ◽  
Annunziata Gloghini ◽  
Daniela Gasparotto ◽  
...  

Aims and background Preliminary evidence suggests that hepatitis C virus (HCV) might play a pathogenetic role in autoimmune-related, non-malignant B-cell lymphoproliferation, as well as in a subset of B-cell non-Hodgkin's lymphomas (NHLs). With regard to the mechanism(s) by which HCV might favor B-cell expansion and malignant transformation, most data support an indirect pathogenetic role of the virus as an exogenous trigger. A direct oncogenetic role of HCV by direct cell infection and deregulation has only been hypothesized on the basis of the lymphotropism of the virus. Methods In this study we investigated the possible HCV infection of NHL B cells by means of sensitive and quantitative polymerase chain reaction (PCR) on affinity-purified neoplastic cells, and by HCV-specific immunohistochemistry and in situ hybridization. Results HCV infection of neoplastic B cells was documented in only three cases, namely the low-grade B-cell NHLs that arose in the course of mixed cryoglobulinemia syndrome (MC). HCV infection, below one viral genome per cell, was detectable only by PCR. All the remaining low-grade (one case) and high-grade B-cell NHLs (two cases) were HCV uninfected. Previous immunoglobulin gene analyses were consistent with an antigen-driven B-cell lymphoproliferation in the studied cases. Conclusions Overall, our data are consistent with an indirect oncogenetic role of HCV in B-cell lymphomagenesis as an exogenous trigger. Infection of B cells by HCV appears possible in some NHL subsets, but the implications remain unknown.


Sign in / Sign up

Export Citation Format

Share Document