scholarly journals Identification of the proximal erythroid promoter region of the mouse anion exchanger gene

Blood ◽  
1996 ◽  
Vol 88 (12) ◽  
pp. 4500-4509 ◽  
Author(s):  
KE Sahr ◽  
BP Daniels ◽  
M Hanspal

The AE1 gene is expressed in erythrocytes and the A-type intercalated cells of the kidney distal collecting duct. Although the 5′ end of the principal transcript expressed in murine erythroid cells has previously been mapped to a cluster of transcription start sites located immediately upstream of exon 1, the 5′ end of the mouse kidney transcript has not been identified. Using the anchored polymerase chain reaction technique to analyze mouse kidney AE1 mRNA, we identified an internal transcription start site located within erythroid intron 3. This site defines an exon of 37 nucleotides that forms the 5′ end of the mouse kidney AE1 transcript. AE1 transcripts beginning at this internal start site could not be detected in RNA isolated from purified erythroid progenitor cells or from erythroid cells undergoing erythropoietin-dependent terminal maturation, although transcripts derived from the upstream site were abundant, indicating that only the upstream promoter is active during erythropoiesis. Transient expression of reporter constructs in erythroid and nonerythroid cell lines identified a proximal upstream region of approximately 135 nucleotides that was active as a basal promoter. However, an additional approximately 200 nucleotides of upstream sequence was required for induced levels of activity in erythroid cells. Although our functional approach does not yet indicate the precise sequences required for erythroid induction, the AE1 gene upstream region contains potential GATA sites at -154, -141, and -60; an E-box at -163; CACCC or GGTGG motifs at -188, -121, and -88; and an AP-1/NF-E2-like site at -42.

Genetics ◽  
2003 ◽  
Vol 163 (4) ◽  
pp. 1375-1387
Author(s):  
Mikhail Savitsky ◽  
Tatyana Kahn ◽  
Ekaterina Pomerantseva ◽  
Pavel Georgiev

Abstract The phenomenon of transvection is well known for the Drosophila yellow locus. Thus enhancers of a promoterless yellow locus in one homologous chromosome can activate the yellow promoter in the other chromosome where the enhancers are inactive or deleted. In this report, we examined the requirements for trans-activation of the yellow promoter at the end of the deficient chromosome. A number of truncated chromosomes ending in different areas of the yellow regulatory region were examined in combination with the promoterless y alleles. We found that trans-activation of the yellow promoter at the end of a deficient chromosome required ∼6 kb of an additional upstream sequence. The nature of upstream sequences affected the strength of transvection: addition of gypsy sequences induced stronger trans-activation than addition of HeT-A or yellow sequences. Only the promoter proximal region (within -158 bp of the yellow transcription start) was essential for trans-activation; i.e., transvection did not require extensive homology in the yellow upstream region. Finally, the yellow enhancers located on the two pairing chromosomes could cooperatively activate one yellow promoter.


1999 ◽  
Vol 181 (16) ◽  
pp. 5075-5080 ◽  
Author(s):  
Hiroshi Kinoshita ◽  
Tomohiro Tsuji ◽  
Hiroomi Ipposhi ◽  
Takuya Nihira ◽  
Yasuhiro Yamada

ABSTRACT BarA of Streptomyces virginiae is a specific receptor protein for a member of butyrolactone autoregulators which binds to an upstream region of target genes to control transcription, leading to the production of the antibiotic virginiamycin M1 and S. BarA-binding DNA sequences (BarA-responsive elements [BAREs]), to which BarA binds for transcriptional control, were restricted to 26 to 29-nucleotide (nt) sequences on barA and barBupstream regions by the surface plasmon resonance technique, gel shift assay, and DNase I footprint analysis. Two BAREs (BARE-1 and BARE-2) on the barB upstream region were located 57 to 29 bp (BARE-1) and 268 to 241 bp (BARE-2) upstream from the barBtranslational start codon. The BARE located on the barAupstream region (BARE-3) was found 101 to 76 bp upstream of thebarA start codon. High-resolution S1 nuclease mapping analysis revealed that BARE-1 covered the barBtranscription start site and BARE-3 covered an autoregulator-dependent transcription start site of the barA gene. Deletion and mutation analysis of BARE-2 demonstrated that at least a 19-nt sequence was required for sufficient BarA binding, and A or T residues at the edge as well as internal conserved nucleotides were indispensable. The identified binding sequences for autoregulator receptor proteins were found to be highly conserved among Streptomyces species.


2019 ◽  
Vol 20 (13) ◽  
pp. 3326 ◽  
Author(s):  
Ziwei Xu ◽  
Meiping Wang ◽  
Ziting Guo ◽  
Xianfeng Zhu ◽  
Zongliang Xia

Drought adversely affects crop growth and yields. The cloning and characterization of drought- or abscisic acid (ABA)-inducible promoters is of great significance for their utilization in the genetic improvement of crop resistance. Our previous studies have shown that maize sulfite oxidase (SO) has a sulfite-oxidizing function and is involved in the drought stress response. However, the promoter of the maize SO gene has not yet been characterized. In this study, the promoter (ZmSOPro, 1194 bp upstream region of the translation initiation site) was isolated from the maize genome. The in-silico analysis of the ZmSOPro promoter identified several cis-elements responsive to the phytohormone ABA and drought stress such as ABA-responsive element (ABRE) and MYB binding site (MBS), besides a number of core cis-acting elements, such as TATA-box and CAAT-box. A 5′ RACE (rapid amplification of cDNA ends) assay identified an adenine residue as the transcription start site of the ZmSO. The ZmSOPro activity was detected by β-glucuronidase (GUS) staining at nearly all developmental stages and in most plant organs, except for the roots in transgenic Arabidopsis. Moreover, its activity was significantly induced by ABA and drought stress. The 5′-deletion mutant analysis of the ZmSOPro in tobacco plants revealed that a 119-bp fragment in the ZmSOPro (upstream of the transcription start site) is a minimal region, which is required for its high-level expression. Moreover, the minimal ZmSOPro was significantly activated by ABA or drought stress in transgenic plants. Further mutant analysis indicated that the MBS element in the minimal ZmSOPro region (119 bp upstream of the transcription start site) is responsible for ABA and drought-stress induced expression. These results improve our understanding of the transcriptional regulation mechanism of the ZmSO gene, and the characterized 119-bp promoter fragment could be an ideal candidate for drought-tolerant gene engineering in both monocot and dicot crops.


2021 ◽  
pp. 166813
Author(s):  
Eric J. Tomko ◽  
Olivia Luyties ◽  
Jenna K. Rimel ◽  
Chi-Lin Tsai ◽  
Jill O. Fuss ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1137
Author(s):  
Annalisa Ferino ◽  
Luigi E. Xodo

The promoter of the Kirsten ras (KRAS) proto-oncogene contains, upstream of the transcription start site, a quadruplex-forming motif called 32R with regulatory functions. As guanine under oxidative stress can be oxidized to 8-oxoguanine (8OG), we investigated the capacity of glycosylases 8-oxoguanine glycosylase (OGG1) and endonuclease VIII-like 1 (Neil1) to excise 8OG from 32R, either in duplex or G-quadruplex (G4) conformation. We found that OGG1 efficiently excised 8OG from oxidized 32R in duplex but not in G4 conformation. By contrast, glycosylase Neil1 showed more activity on the G4 than the duplex conformation. We also found that the excising activity of Neil1 on folded 32R depended on G4 topology. Our data suggest that Neil1, besides being involved in base excision repair pathway (BER), could play a role on KRAS transcription.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhe Sun ◽  
Alexander V. Yakhnin ◽  
Peter C. FitzGerald ◽  
Carl E. Mclntosh ◽  
Mikhail Kashlev

AbstractPromoter-proximal pausing regulates eukaryotic gene expression and serves as checkpoints to assemble elongation/splicing machinery. Little is known how broadly this type of pausing regulates transcription in bacteria. We apply nascent elongating transcript sequencing combined with RNase I footprinting for genome-wide analysis of σ70-dependent transcription pauses in Escherichia coli. Retention of σ70 induces strong backtracked pauses at a 10−20-bp distance from many promoters. The pauses in the 10−15-bp register of the promoter are dictated by the canonical −10 element, 6−7 nt spacer and “YR+1Y” motif centered at the transcription start site. The promoters for the pauses in the 16−20-bp register contain an additional −10-like sequence recognized by σ70. Our in vitro analysis reveals that DNA scrunching is involved in these pauses relieved by Gre cleavage factors. The genes coding for transcription factors are enriched in these pauses, suggesting that σ70 and Gre proteins regulate transcription in response to changing environmental cues.


2016 ◽  
Vol 113 (21) ◽  
pp. E2899-E2905 ◽  
Author(s):  
Irina O. Vvedenskaya ◽  
Hanif Vahedian-Movahed ◽  
Yuanchao Zhang ◽  
Deanne M. Taylor ◽  
Richard H. Ebright ◽  
...  

During transcription initiation, RNA polymerase (RNAP) holoenzyme unwinds ∼13 bp of promoter DNA, forming an RNAP-promoter open complex (RPo) containing a single-stranded transcription bubble, and selects a template-strand nucleotide to serve as the transcription start site (TSS). In RPo, RNAP core enzyme makes sequence-specific protein–DNA interactions with the downstream part of the nontemplate strand of the transcription bubble (“core recognition element,” CRE). Here, we investigated whether sequence-specific RNAP–CRE interactions affect TSS selection. To do this, we used two next-generation sequencing-based approaches to compare the TSS profile of WT RNAP to that of an RNAP derivative defective in sequence-specific RNAP–CRE interactions. First, using massively systematic transcript end readout, MASTER, we assessed effects of RNAP–CRE interactions on TSS selection in vitro and in vivo for a library of 47 (∼16,000) consensus promoters containing different TSS region sequences, and we observed that the TSS profile of the RNAP derivative defective in RNAP–CRE interactions differed from that of WT RNAP, in a manner that correlated with the presence of consensus CRE sequences in the TSS region. Second, using 5′ merodiploid native-elongating-transcript sequencing, 5′ mNET-seq, we assessed effects of RNAP–CRE interactions at natural promoters in Escherichia coli, and we identified 39 promoters at which RNAP–CRE interactions determine TSS selection. Our findings establish RNAP–CRE interactions are a functional determinant of TSS selection. We propose that RNAP–CRE interactions modulate the position of the downstream end of the transcription bubble in RPo, and thereby modulate TSS selection, which involves transcription bubble expansion or transcription bubble contraction (scrunching or antiscrunching).


1990 ◽  
Vol 10 (8) ◽  
pp. 4170-4179 ◽  
Author(s):  
R Nusse ◽  
H Theunissen ◽  
E Wagenaar ◽  
F Rijsewijk ◽  
A Gennissen ◽  
...  

Wnt-1 (int-1) is a cellular oncogene often activated by insertion of proviral DNA of the mouse mammary tumor virus. We have mapped the 5' end and the promoter area of the Wnt-1 gene by nuclease protection and primer extension assays. In differentiating P19 embryonal carcinoma cells, in which Wnt-1 is naturally expressed, two start sites of transcription were found, one preceded by two TATA boxes and one preceded by several GC boxes. In P19 cells, a 1-kilobase upstream sequence of Wnt-1 was able to confer differentiation-specific expression on a heterologous gene. We have investigated how Wnt-1 transcription was affected by mouse mammary tumor virus proviral integrations in various configurations near the promoters of the gene. One provirus has been inserted in the 5' nontranslated part of Wnt-1, in the same transcriptional orientation, and has functionally replaced the Wnt-1 promoters. Wnt-1 transcription in this tumor starts in the right long terminal repeat of the provirus, with considerable readthrough transcription from the left long terminal repeat. Another provirus has been inserted in the orientation opposite that of Wnt-1 into a GC box, disrupting the first Wnt-1 transcription start site but not the downstream start site. Most insertions have not structurally altered the Wnt-1 transcripts and have enhanced the activity of the normal two promoters.


Sign in / Sign up

Export Citation Format

Share Document