scholarly journals Human Erythrocytes Express GLUT5 and Transport Fructose

Blood ◽  
1997 ◽  
Vol 89 (11) ◽  
pp. 4190-4195 ◽  
Author(s):  
Ilona I. Concha ◽  
Fernando V. Velásquez ◽  
Juan M. Martı́nez ◽  
Constanza Angulo ◽  
Andrea Droppelmann ◽  
...  

Abstract Although erythrocytes readily metabolize fructose, it has not been known how this sugar gains entry to the red blood cell. We present evidence indicating that human erythrocytes express the fructose transporter GLUT5, which is the major means for transporting fructose into the cell. Immunoblotting and immunolocalization experiments identified the presence of GLUT1 and GLUT5 as the main facilitative hexose transporters expressed in human erythrocytes, with GLUT2 present in lower amounts. Functional studies allowed the identification of two transporters with different kinetic properties involved in the transport of fructose in human erythrocytes. The predominant transporter (GLUT5) showed an apparent Km for fructose of approximately 10 mmol/L. Transport of low concentrations of fructose was not affected by 2-deoxy–D-glucose, a glucose analog that is transported by GLUT1 and GLUT2. Similarly, cytochalasin B, a potent inhibitor of the functional activity of GLUT1 and GLUT2, did not affect the transport of fructose in human erythrocytes. The functional properties of the fructose transporter present in human erythrocytes are consistent with a central role for GLUT5 as the physiological transporter of fructose in these cells.

1958 ◽  
Vol 194 (1) ◽  
pp. 44-46 ◽  
Author(s):  
Joseph Dancis ◽  
Gordon Olsen ◽  
Gladys Folkart

The transfer of l-histidine and d-xylose across the placenta and into the red blood cell and amniotic fluids was investigated in the guinea pig to see if a correlation existed that might be adapted to a measure of placental function. There was a rough correlation in the permeability of the red blood cell and the placenta to both substances but it was not constant. Insufficient l-histidine was transferred into the amniotic fluid under the conditions of these experiments to be accurately measured. d-Xylose was demonstrable in the amniotic fluid in relatively low concentrations, but there was no evident relation to placental permeability.


2021 ◽  
Vol 17 (9) ◽  
pp. 1798-1805
Author(s):  
Damien Phakousonh ◽  
Yale Wang ◽  
Sabrina Schlicht ◽  
Sam Wiskirchen ◽  
Trevor Bos ◽  
...  

A pectin-oligochitosan microcapsule system has recently been developed for novel oxygen therapeutic design. To improve the stability of the pectin-oligochitosan microcapsules in physiological conditions, both covalent (glutaraldehyde) and noncovalent (Mn2+ and Ca2+) cross-linkers were tested. The chemistry and morphology of the microcapsules were studied using FTIR and SEM, respectively. Results showed that glutaraldehyde is an effective cross-linker, even at low concentrations and short incubation times, and the glutaraldehyde cross-linking does not negatively impact the morphology of the microcapsules. Moreover, it was confirmed that the hemoglobin could be retained within the microcapsules with a minimal release.


1985 ◽  
Vol 230 (3) ◽  
pp. 777-784 ◽  
Author(s):  
N S Janmohamed ◽  
J D Young ◽  
S M Jarvis

The transmembrane topology of the nucleoside transporter of human erythrocytes, which had been covalently photolabelled with [3H]nitrobenzylthioinosine, was investigated by monitoring the effect of proteinases applied to intact erythrocytes and unsealed membrane preparations. Treatment of unsealed membranes with low concentrations of trypsin and chymotrypsin at 1 degree C cleaved the nucleoside transporter, a band 4.5 polypeptide, apparent Mr 66 000-45 000, to yield two radioactive fragments with apparent Mr 38 000 and 23 000. The fragment of Mr 38 000, in contrast to the Mr 23 000 fragment, migrated as a broad peak (apparent Mr 45 000-31 000) suggesting that carbohydrate was probably attached to this fragment. Similar treatment of intact cells under iso-osmotic saline conditions at 1 degree C had no effect on the apparent Mr of the [3H]nitrobenzylthioinosine-labelled band 4.5, suggesting that at least one of the trypsin cleavage sites resulting in the apparent Mr fragments of 38 000 and 23 000 is located at the cytoplasmic surface. However, at low ionic strengths the extracellular region of the nucleoside transporter is susceptible to trypsin proteolysis, indicating that the transporter is a transmembrane protein. In contrast, the extracellular region of the [3H]cytochalasin B-labelled glucose carrier, another band 4.5 polypeptide, was resistant to trypsin digestion. Proteolysis of the glucose transporter at the cytoplasmic surface generated a radiolabelled fragment of Mr 19 000 which was distinct from the Mr 23 000 fragment radiolabelled with [3H]nitrobenzylthioinosine. The affinity for the reversible binding of [3H]cytochalasin B and [3H]nitrobenzylthioinosine to the glucose and nucleoside transporters, respectively, was lowered 2-3-fold following trypsin treatment of unsealed membranes, but the maximum number of inhibitor binding sites was unaffected despite the cleavage of band 4.5 to lower-Mr fragments.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 162-162
Author(s):  
Andras Spaan ◽  
Tamara Reyes-Robles ◽  
Cédric Badiou ◽  
Sylvie Cochet ◽  
Kristina Boguslawski ◽  
...  

Abstract Introduction: Staphylococcus aureus is a major human pathogen. Infections by this bacterium range from minor skin and soft tissue infections, to more invasive and life threating infections like sepsis, osteomyelitis, and pneumonia. In order to successfully infect the mammalian host, S. aureus has to overcome iron scarcity within the host. As such, S. aureus is thought to produce toxins that lyse erythrocytes, releasing hemoglobin, a critical iron source for S. aureus in mammals. The bi-component β-barrel pore-forming leukocidins kill human neutrophils and were mostly considered as virulence factors fighting the host innate immune system. We show here thatHlgAB and LukED are two potent hemolytic leukocidins against human erythrocytes. Furthermore, we describe the identification of the Duffy antigen receptor for chemokines (DARC) as the red blood cell receptor for both LukED and HlgAB leukocidins. Results: We took advantage of erythrocyte samples from different Duffy (Fy) genotyped individuals from the French National Blood Transfusion Institute. We evaluated the receptor expression on the surface of erythrocytes (Figure 1). DARC-negative erythrocytes (phenotype Fya-/b-) were fully resistant to HlgAB and LukED. Compared to individuals expressing normal levels of DARC (phenotypes Fya+/b+, Fya+/b+weak, Fya+/a+, and Fyb+/b+), individuals expressing intermediate (phenotype Fyb+weak/b+weak) or very low levels of DARC (phenotype Fyb-/b+weak) showed intermediate susceptibility to both HlgAB and LukED (Figure 1). These data demonstrate that the hemolytic activity of HlgAB and LukED is dependent on the expression of DARC at the red blood cell surface. To better understand the interaction of HlgAB and LukED with DARC, we screened HEK293T cells transfected with plasmids encoding DARC mutants (Tournamille et al, 2003). We demonstrate that while both HlgAB and LukED bind to DARC with nanomolar affinities, they do so by recognizing different domains of the receptor. To directly evaluate whether LukED and HlgAB can promote bacterial replication as a result of erythrocyte lysis, S. aureus was grown in iron-starved medium supplemented with cell-free extracts of erythrocytes treated with LukED or HlgAB. We observed that HlgAB and LukED were each capable of promoting S. aureus growth in a DARC and hemoglobin scavenging system (IsdBH)-dependent manner. These in vitro studies were supported by a murine bacteremia model. Discussion: By combining human studies of DARC polymorphisms with gain and loss of function experiments and biochemical analyses, we demonstrate that DARC is necessary and sufficient to render host cells susceptible to LukED and HlgAB. By targeting DARC, HlgAB and LukED support S. aureus growth in a hemoglobin-acquisition dependent-manner. Thus, these findings provide the missing link of how S. aureus targets and lyses erythrocytes to release one of the scarcest nutrient within the mammalian host. Human epidemiological studies comparing the severity of S. aureus infection in patients with DARC positive or DARC negative erythrocytes are now required to evaluate the contribution of DARC-mediated hemolysis in human staphylococcal diseases. Given the resistance of DARC negative erythrocytes to the parasites Plasmodium vivax and P. knowlesi, and now to the hemolytic activity of the bacterium S. aureus, our findings suggest the possibility of a positive selection event in response to these important human pathogens. (A) Susceptibility of human erythrocytes to S. aureus β-barrel pore forming toxins. The dashed line indicates 50% hemolysis. n = 6. (B) Levels of DARC and CD55 on erythrocytes of donors with different Fy phenotypes. The dashed line indicates the detection threshold. n = 2-7 ± SEM. (C,E) Susceptibility of human erythrocytes with different Fy phenotypes to HlgAB (C) and LukED (E). The dashed line indicates 50% hemolysis. n = 2-7 ± SEM. (D, F) Correlation of half-maximal effective concentrations (EC50) of HlgAB (D) and LukED (F) with the total number of receptors expressed on the erythrocyte surface. For Fyb+weak/Fyb- donors, LukED EC50 could not be calculated. n = 2-7 ± SEM. Figure 1. Hemolytic activity of HlgAB and LukED depends on DARC. Figure 1. Hemolytic activity of HlgAB and LukED depends on DARC. Disclosures No relevant conflicts of interest to declare.


Biorheology ◽  
2021 ◽  
Vol 57 (2-4) ◽  
pp. 101-116
Author(s):  
Masako Sugihara-Seki ◽  
Tenki Onozawa ◽  
Nozomi Takinouchi ◽  
Tomoaki Itano ◽  
Junji Seki

BACKGROUND: In the blood flow through microvessels, platelets exhibit enhanced concentrations in the layer free of red blood cells (cell-free layer) adjacent to the vessel wall. The motion of platelets in the cell-free layer plays an essential role in their interaction with the vessel wall, and hence it affects their functions of hemostasis and thrombosis. OBJECTIVE: We aimed to estimate the diffusivity of platelet-sized particles in the transverse direction (the direction of vorticity) across the channel width in the cell-free layer by in vitro experiments for the microchannel flow of red blood cell (RBC) suspensions containing platelet-sized particles. METHODS: Fluorescence microscope observations were performed to measure the transverse distribution of spherical particles immersed in RBC suspensions flowing through a Y-shaped bifurcating microchannel. We examined the development of the particle concentration profiles along the flow direction in the daughter channels, starting from asymmetric distributions with low concentrations on the inner side of the bifurcation at the inlet of the daughter channels. RESULTS: In daughter channels of 40 μm width, reconstruction of particle margination revealed that a symmetric concentration profile was attained in ∼30 mm from the bifurcation, independent of flow rate. CONCLUSIONS: We presented experimental evidence of particle margination developing in a bifurcating flow channel where the diffusivity of 2.9-μm diameter particles was estimated to be ∼40 μm2/s at a shear rate of 1000 s−1 and hematocrit of 0.2.


Sign in / Sign up

Export Citation Format

Share Document