scholarly journals Origin of the Hodgkin/Reed-Sternberg Cells in Chronic Lymphocytic Leukemia With “Hodgkin's Transformation”

Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1757-1761 ◽  
Author(s):  
Toshiyuki Ohno ◽  
Bassam N. Smir ◽  
Dennis D. Weisenburger ◽  
Randy D. Gascoyne ◽  
Steven D. Hinrichs ◽  
...  

Abstract A lymphoma with the characteristic features of Hodgkin's disease (HD) occasionally develops in patients with B-cell chronic lymphocytic leukemia (CLL), and has been called Richter's syndrome with HD features. In such cases, large tumor cells have the morphological and immunophenotypic features of classical Hodgkin and Reed-Sternberg (H-RS) cells. However, it is not known whether the H-RS cells arise from transformation of the underlying CLL cells or from a different pathological process. We report herein a study of the clonal relationship between the CLL cells and the H-RS cells in three cases of Richter's syndrome with HD features by using a single cell assay. We isolated single CLL cells and H-RS cells from immunostained tissue sections by micromanipulation. The immunoglobulin heavy chain gene (IgH) complementarity determining region (CDR) III of each cell was amplified by the polymerase chain reaction (PCR). The products were then compared by gel electrophoresis and nucleotide sequencing. The IgH CDRIII sequences from the H-RS cells were identical to those from the CLL cells in two cases. In one case, the clonal relationship between the two types of cells could not be determined because PCR products could not be obtained from any of the H-RS cells. This study shows that the H-RS cells and the CLL cells belong to the same clonal population in some cases of Richter's syndrome with HD features. Furthermore, our findings indicate that mature B cells can undergo transformation to cells with the features of H-RS cells, in association with a cellular background typical of HD. This study also supports recent findings suggesting that the H-RS cells in classical HD are derived from transformed B cells.

Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1757-1761
Author(s):  
Toshiyuki Ohno ◽  
Bassam N. Smir ◽  
Dennis D. Weisenburger ◽  
Randy D. Gascoyne ◽  
Steven D. Hinrichs ◽  
...  

A lymphoma with the characteristic features of Hodgkin's disease (HD) occasionally develops in patients with B-cell chronic lymphocytic leukemia (CLL), and has been called Richter's syndrome with HD features. In such cases, large tumor cells have the morphological and immunophenotypic features of classical Hodgkin and Reed-Sternberg (H-RS) cells. However, it is not known whether the H-RS cells arise from transformation of the underlying CLL cells or from a different pathological process. We report herein a study of the clonal relationship between the CLL cells and the H-RS cells in three cases of Richter's syndrome with HD features by using a single cell assay. We isolated single CLL cells and H-RS cells from immunostained tissue sections by micromanipulation. The immunoglobulin heavy chain gene (IgH) complementarity determining region (CDR) III of each cell was amplified by the polymerase chain reaction (PCR). The products were then compared by gel electrophoresis and nucleotide sequencing. The IgH CDRIII sequences from the H-RS cells were identical to those from the CLL cells in two cases. In one case, the clonal relationship between the two types of cells could not be determined because PCR products could not be obtained from any of the H-RS cells. This study shows that the H-RS cells and the CLL cells belong to the same clonal population in some cases of Richter's syndrome with HD features. Furthermore, our findings indicate that mature B cells can undergo transformation to cells with the features of H-RS cells, in association with a cellular background typical of HD. This study also supports recent findings suggesting that the H-RS cells in classical HD are derived from transformed B cells.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 45-50 ◽  
Author(s):  
LF Bertoli ◽  
H Kubagawa ◽  
GV Borzillo ◽  
M Mayumi ◽  
JT Prchal ◽  
...  

Abstract A murine monoclonal antibody made against an idiotypic determinant (Id) of surface IgM/IgD lambda molecules on chronic lymphocytic leukemia (CLL) cells of a 71-year-old woman was used for clonal analysis by two- color immunofluorescence. The anti-Id antibody identified IgM+/IgD+/lambda+ B cells as the predominant cell type of her CLL clone. In addition, substantial proportions of the IgG and IgA B cells and most of the IgM plasma cells in her bone marrow and blood were Id+. Six years after diagnosis, the patient died of respiratory failure due to infiltration of lungs by malignant cells. Autopsy revealed a dramatic change in the tumor cell morphology. The lungs, hilar nodes, and liver were infiltrated by a diffuse large cell lymphoma admixed with the leukemic cells. By immunohistologic staining these anaplastic lymphoma cells were IgM+/IgD-/lambda+ B cells expressing the same Id noted earlier on the CLL cells. The immunoglobulin gene rearrangement pattern on Southern blot analysis was also the same in leukemic blood cells and in the tissues involved by the lymphoma. Thus, the combination of antiidiotype and immunoglobulin gene analyses in this patient with Richter's syndrome revealed that a CLL clone, seemingly “frozen” in differentiation, was actually undergoing isotype switching, differentiation into plasma cells, and evolution into a rapidly growing and fetal lymphoma.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 45-50
Author(s):  
LF Bertoli ◽  
H Kubagawa ◽  
GV Borzillo ◽  
M Mayumi ◽  
JT Prchal ◽  
...  

A murine monoclonal antibody made against an idiotypic determinant (Id) of surface IgM/IgD lambda molecules on chronic lymphocytic leukemia (CLL) cells of a 71-year-old woman was used for clonal analysis by two- color immunofluorescence. The anti-Id antibody identified IgM+/IgD+/lambda+ B cells as the predominant cell type of her CLL clone. In addition, substantial proportions of the IgG and IgA B cells and most of the IgM plasma cells in her bone marrow and blood were Id+. Six years after diagnosis, the patient died of respiratory failure due to infiltration of lungs by malignant cells. Autopsy revealed a dramatic change in the tumor cell morphology. The lungs, hilar nodes, and liver were infiltrated by a diffuse large cell lymphoma admixed with the leukemic cells. By immunohistologic staining these anaplastic lymphoma cells were IgM+/IgD-/lambda+ B cells expressing the same Id noted earlier on the CLL cells. The immunoglobulin gene rearrangement pattern on Southern blot analysis was also the same in leukemic blood cells and in the tissues involved by the lymphoma. Thus, the combination of antiidiotype and immunoglobulin gene analyses in this patient with Richter's syndrome revealed that a CLL clone, seemingly “frozen” in differentiation, was actually undergoing isotype switching, differentiation into plasma cells, and evolution into a rapidly growing and fetal lymphoma.


Blood ◽  
2004 ◽  
Vol 104 (8) ◽  
pp. 2499-2504 ◽  
Author(s):  
George F. Widhopf ◽  
Laura Z. Rassenti ◽  
Traci L. Toy ◽  
John G. Gribben ◽  
William G. Wierda ◽  
...  

Abstract We examined the immunoglobulin (Ig) heavy chain variable region genes (VH genes) used by leukemia cells of 1220 unrelated patients with chronic lymphocytic leukemia (CLL). We found 1188 (97%) expressed Ig encoded by a single Ig VH subgroup, the most common of which was VH3 (571 or 48.1%), followed by VH1 (319 or 26.8%) and VH4 (241 or 20.2%). Using allele-specific primers, we found 13.8% of all samples (n = 164) used one major VH1-69 allele, designated 51p1, 163 of which were not somatically mutated. For these cases, there was marked restriction in the structure of the Ig third complementarity determining regions (CDR3s), which were encoded by a small number of unmutated D and JH gene segments. Strikingly, 15 of the 163 cases had virtually identical CDR3s encoded by the second reading frame of D3-16 and JH3. Further analysis revealed that each of these 15 samples used the same unmutated Ig kappa light-chain gene, namely A27. These data reveal that approximately 1.3% (15/1220) of all patients had leukemia cells that expressed virtually identical Ig. This finding provides compelling evidence that the Ig expressed by CLL B cells are highly selected and not representative of the Ig expressed by naive B cells.


Blood ◽  
1995 ◽  
Vol 85 (7) ◽  
pp. 1913-1919 ◽  
Author(s):  
H Aoki ◽  
M Takishita ◽  
M Kosaka ◽  
S Saito

V(D)J recombination and somatic hypermutations are developmentally regulated during B-cell differentiation; therefore, DNA analysis of the Ig gene delineates the cellular origin of B-cell neoplasms. We analyzed the third complementarity-determining region and adjacent regions of the Ig heavy-chain gene of tumor cells from 7 patients with Waldenstrom's macroglobulinemia (WM) and from 10 patients with B-cell chronic lymphocytic leukemia (CLL), 2 of whom progressed to high-grade non-Hodgkin's lymphoma (NHL), ie, Richter's syndrome (RS). There were no intraclonal variations resulting from VH replacements or ongoing somatic mutations in both WM and CLL. We found replacement mutations in the D and/or JH segments in all patients with WM and in 4 of the 10 patients with CLL, including the 2 RS patients. Replacement mutations were clustered in codon 102 of the JH segment. Preferential utilization of the JH4 gene was found in WM (5 of 7 [71.4%]) and in CLL (7 of 10 [70.0%]), and DXP family genes in CLL (5 of 10 [50.0%]). In conclusion, WM and CLL with RS are generated under the influence of antigenic stimulation and selection. However, the majority of CLL may arise from a distinct subpopulation that has the restricted repertoire of nonmutated Ig genes.


2018 ◽  
Vol 40 (4) ◽  
pp. 261-267 ◽  
Author(s):  
K Tari ◽  
Z Shamsi ◽  
H Reza Ghafari ◽  
A Atashi ◽  
M Shahjahani ◽  
...  

Chronic lymphocytic leukemia (CLL) is increased proliferation of B-cells with peripheral blood and bone marrow involvement, which is usually observed in older people. Genetic mutations, epigenetic changes and miRs play a role in CLL pathogenesis. Del 11q, del l17q, del 6q, trisomy 12, p53 and IgVH mutations are the most important genetic changes in CLL. Deletion of miR-15a and miR-16a can increase bcl2 gene expression, miR-29 and miR-181 deletions decrease the expression of TCL1, and miR-146a deletion prevents tumor metastasis. Epigenetic changes such as hypo- and hypermethylation, ubiquitination, hypo- and hyperacetylation of gene promoters involved in CLL pathogenesis can also play a role in CLL. Expression of CD38 and ZAP70, presence or absence of mutation in IgVH and P53 mutation are among the factors involved in CLL prognosis. Use of monoclonal antibodies against surface markers of B-cells like anti-CD20 as well as tyrosine kinase inhibitors are the most important therapeutic approaches for CLL.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Colado ◽  
Esteban Enrique Elías ◽  
Valeria Judith Sarapura Martínez ◽  
Gregorio Cordini ◽  
Pablo Morande ◽  
...  

AbstractHypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1524-1533 ◽  
Author(s):  
Fiona Murray ◽  
Nikos Darzentas ◽  
Anastasia Hadzidimitriou ◽  
Gerard Tobin ◽  
Myriam Boudjogra ◽  
...  

Abstract Somatic hypermutation (SHM) features in a series of 1967 immunoglobulin heavy chain gene (IGH) rearrangements obtained from patients with chronic lymphocytic leukemia (CLL) were examined and compared with IGH sequences from non-CLL B cells available in public databases. SHM analysis was performed for all 1290 CLL sequences in this cohort with less than 100% identity to germ line. At the cohort level, SHM patterns were typical of a canonical SHM process. However, important differences emerged from the analysis of certain subgroups of CLL sequences defined by: (1) IGHV gene usage, (2) presence of stereotyped heavy chain complementarity-determining region 3 (HCDR3) sequences, and (3) mutational load. Recurrent, “stereotyped” amino acid changes occurred across the entire IGHV region in CLL subsets carrying stereotyped HCDR3 sequences, especially those expressing the IGHV3-21 and IGHV4-34 genes. These mutations are underrepresented among non-CLL sequences and thus can be considered as CLL-biased. Furthermore, it was shown that even a low level of mutations may be functionally relevant, given that stereotyped amino acid changes can be found in subsets of minimally mutated cases. The precise targeting and distinctive features of somatic hypermutation (SHM) in selected subgroups of CLL patients provide further evidence for selection by specific antigenic element(s).


Sign in / Sign up

Export Citation Format

Share Document