scholarly journals Analysis of Signal Transduction Pathways in Human Eosinophils Activated by Chemoattractants and the T-Helper 2–Derived Cytokines Interleukin-4 and Interleukin-5

Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2547-2557 ◽  
Author(s):  
Paul J. Coffer ◽  
René C. Schweizer ◽  
Gerald R. Dubois ◽  
Tjander Maikoe ◽  
Jan-Willem J. Lammers ◽  
...  

Abstract Activation and recruitment of eosinophils in allergic inflammation is in part mediated by chemoattractants and T-helper 2 (Th2)-derived cytokines. However, little is known concerning the signal transduction mechanisms by which this activation occurs. We have investigated tyrosine kinase-mediated activation of phosphatidylinositol 3-kinase (PI3K) and compared this with the activation of the p21ras-ERK signaling pathway in human eosinophils. The related cytokines interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF), all induced PI3K activity detected in antiphosphotyrosine immunoprecipitates. Furthermore, the chemoattractants platelet-activating factor (PAF), RANTES, and C5a were also able to induce phosphotyrosine-associated PI3K activity. Protein kinase B (PKB) is a downstream target of PI3K activation by growth factors. Induction of PKB phosphorylation in human eosinophils was transiently induced on activation with the cytokines IL-4 and IL-5, as well as the chemoattractants PAF, C5a, and RANTES showing a broad activation profile. Surprisingly, analysis of the activation of the mitogen-activated protein (MAP) kinases p44ERK1 and p42ERK2, showed that ERK2, but not ERK1, was transiently activated in human eosinophils after stimulation with IL-5 or PAF. Activation kinetics correlated with activation of p21ras by both cytokines and chemoattractants as measured by a novel assay for guanosine triphosphate (GTP)-loading. Finally, using specific inhibitors of both the p21ras-ERK and PI3K signaling pathways, a role was demonstrated for PI3K, but not p21ras-ERK, in activation of the serum-treated zymosan (STZ)-mediated respiratory burst in IL-5 and PAF-primed eosinophils. In summary, these data show that in human eosinophils, Th2-derived cytokines differentially activate both PI3K and MAP kinase signal transduction pathways with distinct functional consequences showing complex regulation of eosinophil effector functions.

Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2547-2557 ◽  
Author(s):  
Paul J. Coffer ◽  
René C. Schweizer ◽  
Gerald R. Dubois ◽  
Tjander Maikoe ◽  
Jan-Willem J. Lammers ◽  
...  

Activation and recruitment of eosinophils in allergic inflammation is in part mediated by chemoattractants and T-helper 2 (Th2)-derived cytokines. However, little is known concerning the signal transduction mechanisms by which this activation occurs. We have investigated tyrosine kinase-mediated activation of phosphatidylinositol 3-kinase (PI3K) and compared this with the activation of the p21ras-ERK signaling pathway in human eosinophils. The related cytokines interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF), all induced PI3K activity detected in antiphosphotyrosine immunoprecipitates. Furthermore, the chemoattractants platelet-activating factor (PAF), RANTES, and C5a were also able to induce phosphotyrosine-associated PI3K activity. Protein kinase B (PKB) is a downstream target of PI3K activation by growth factors. Induction of PKB phosphorylation in human eosinophils was transiently induced on activation with the cytokines IL-4 and IL-5, as well as the chemoattractants PAF, C5a, and RANTES showing a broad activation profile. Surprisingly, analysis of the activation of the mitogen-activated protein (MAP) kinases p44ERK1 and p42ERK2, showed that ERK2, but not ERK1, was transiently activated in human eosinophils after stimulation with IL-5 or PAF. Activation kinetics correlated with activation of p21ras by both cytokines and chemoattractants as measured by a novel assay for guanosine triphosphate (GTP)-loading. Finally, using specific inhibitors of both the p21ras-ERK and PI3K signaling pathways, a role was demonstrated for PI3K, but not p21ras-ERK, in activation of the serum-treated zymosan (STZ)-mediated respiratory burst in IL-5 and PAF-primed eosinophils. In summary, these data show that in human eosinophils, Th2-derived cytokines differentially activate both PI3K and MAP kinase signal transduction pathways with distinct functional consequences showing complex regulation of eosinophil effector functions.


2004 ◽  
Vol 16 (9) ◽  
pp. 991-1000 ◽  
Author(s):  
L WANG ◽  
E KNUDSEN ◽  
Y JIN ◽  
S GESSANI ◽  
A MAGHAZACHI

1996 ◽  
Vol 33 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Jacques A. Nunès ◽  
Michaela Battifora ◽  
James R. Woodgett ◽  
Alemseged Truneh ◽  
Daniel Olive ◽  
...  

2006 ◽  
Vol 290 (4) ◽  
pp. C1018-C1030 ◽  
Author(s):  
Yun Tao ◽  
Kenneth A. Drabik ◽  
Tonya S. Waypa ◽  
Mark W. Musch ◽  
John C. Alverdy ◽  
...  

Conditioned media from the probiotic Lactobacillus GG (LGG-CM) induce heat shock protein (Hsp) expression in intestinal epithelial cells. LGG-CM induces both Hsp25 and Hsp72 in a time- and concentration-dependent manner. These effects are mediated by a low-molecular-weight peptide that is acid and heat stable. DNA microarray experiments demonstrate that Hsp72 is one of the most highly upregulated genes in response to LGG-CM treatment. Real-time PCR and electrophoretic mobility shift assay confirm that regulation of Hsp induction is at least in part transcriptional in nature, involving heat shock factor-1. Although Hsps are not induced for hours after exposure, transient exposure to LGG-CM is sufficient to initiate the signal for Hsp induction, suggesting that signal transduction pathways may be involved. Experiments confirm that LGG-CM modulates the activity of certain signaling pathways in intestinal epithelial cells by activating MAP kinases. Inhibitors of p38 and JNK block the expression of Hsp72 normally induced by LGG-CM. Functional studies indicate that LGG-CM treatment of gut epithelial cells protects them from oxidant stress, perhaps by preserving cytoskeletal integrity. By inducing the expression of cytoprotective Hsps in gut epithelial cells, and by activating signal transduction pathways, the peptide product(s) secreted by LGG may contribute to the beneficial clinical effects attributed to this probiotic.


1992 ◽  
Vol 281 (2) ◽  
pp. 301-307 ◽  
Author(s):  
I Schwaner ◽  
R Seifert ◽  
G Schultz

The pluripotent human erythroleukaemia cell line, HEL, possesses erythrocytic, megakaryocytic and macrophage-like properties. With respect to signal transduction, HEL cells have been used as a model system for platelets, but little attention has been paid to their phagocytic properties. We studied the effects of various receptor agonists on the intracellular free Ca2+ concentration ([Ca2+]i) in HEL cells. Thrombin, platelet-activating factor (PAF), ATP, UTP, prostaglandins E1 and E2 (PGE1 and PGE2), the PGE2 analogue sulprostone and the stable PGI2 analogues iloprost and cicaprost increased [Ca2+]i. ADP was less effective than ATP, and UDP was unable to increase [Ca2+]i. The increases in [Ca2+]i induced by thrombin, PAF, ATP, UTP, iloprost and cicaprost were pertussis toxin-insensitive, whereas the increases induced by PGE2 and sulprostone were completely inhibited by the toxin. The increase in [Ca2+]i induced by PGE1 was partially inhibited by pertussis toxin. PGE2 did not desensitize the increase in [Ca2+]i induced by iloprost, and vice versa. PGE1 desensitized the response to PGE2 and iloprost but not vice versa. Adrenaline potentiated the iloprost- but not the PGE2-induced rise in [Ca2+]i. The phorbol ester phorbol 12-myristate 13-acetate completely blocked the rise in [Ca2+]i induced by ATP and PGE1, whereas the increases induced by thrombin and PAF were only partially inhibited. Agonists increased [Ca2+]i through release from internal stores and sustained Ca2+ influx. Thrombin stimulated Mn2+ influx, which was blocked by Ni2+. Diltiazem, isradipine, gramicidin and 1-(beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl)-1H-imidazole hydrochloride (SK&F 96365) did not affect agonist-induced rises in [Ca2+]i. HEL cells contained substantial amounts of beta-glucuronidase which, however, could not be released, and they did not aggregate or generate superoxide. Our data suggest that: (1) HEL cells possess nucleotide receptors with properties similar to those of phagocytes; (2) they possess receptors for PGE2 and PGI2, and PGE1 is an agonist at both receptors; (3) agonist-induced increases in [Ca2+]i are mediated through pertussis toxin-sensitive as well as -insensitive signal transduction pathways; and (4) agonists increase [Ca2+]i by mobilization from internal stores and influx from the extracellular space through cation channels with properties similar to those of phagocytes and platelets.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3816-3822 ◽  
Author(s):  
Li Hua Wang ◽  
Robert A. Kirken ◽  
Xiao Yi Yang ◽  
Rebecca A. Erwin ◽  
Luis DaSilva ◽  
...  

Interleukin (IL) 4 is a potent immunomodulatory cytokine secreted by T-helper 2 (Th2) cells and Th2 mast cells that promotes the commitment of cells. However, unregulated production and release of IL-4 can exacerbate allergic reactions and increase susceptibility to infectious organisms and viruses. Here, we present evidence that AG-490, a Janus tyrosine kinase (JAK) 2-JAK3 inhibitor, effectively blocked IL-4 gene expression and secretion in the Th2 cell line D10 that was not occurring after anti-CD3 antibody stimulation, whereas AG-490 had no inhibitory effect on production of other Th2 cytokines or cytokines synthesized by the corresponding Th1 cell line clone 29. AG-490 potently inhibited IL-4–mediated proliferation of both D10 and the IL-4–dependent cell line CT.4S. Moreover, AG-490 markedly inhibited IL-4 activation of JAK3 and blocked the downstream activation of signal transducer and activator of transcription 6, as judged by tyrosine phosphorylation, DNA binding, and transcription assays. In contrast, AG-490 did not affect tumor necrosis factor  activation of NF-κB at similar concentrations of drug. These data suggest that tyrosine kinase inhibitors that inhibit JAK3 may have previously unrecognized and selective clinical potential as immunotherapeutic drugs to treat Th2-mediated diseases driven by IL-4.


Sign in / Sign up

Export Citation Format

Share Document