scholarly journals Sustained Phenotypic Correction of Murine Hemophilia A by In Vivo Gene Therapy

Blood ◽  
1998 ◽  
Vol 91 (9) ◽  
pp. 3273-3281 ◽  
Author(s):  
Sheila Connelly ◽  
Julie L. Andrews ◽  
Angela M. Gallo ◽  
Dawn B. Kayda ◽  
Jiahua Qian ◽  
...  

Abstract Hemophilia A is caused by a deficiency of blood coagulation factor VIII (FVIII) and has been widely discussed as a candidate for gene therapy. While the natural canine model of hemophilia A has been valuable for the development of FVIII pharmaceutical products, the use of hemophiliac dogs for gene therapy studies has several limitations such as expense and the long canine generation time. The recent creation of two strains of FVIII-deficient mice provides the first small animal model of hemophilia A. Treatment of hemophiliac mice of both genotypes with potent, human FVIII-encoding adenoviral vectors resulted in expression of biologically active human FVIII at levels, which declined, but remained above the human therapeutic range for over 9 months. The duration of expression and FVIII plasma levels achieved were similar in both hemophiliac mouse strains. Treated mice readily survived tail clipping with minimal blood loss, thus showing phenotypic correction of murine hemophilia A by in vivo gene therapy.

Blood ◽  
1998 ◽  
Vol 91 (9) ◽  
pp. 3273-3281 ◽  
Author(s):  
Sheila Connelly ◽  
Julie L. Andrews ◽  
Angela M. Gallo ◽  
Dawn B. Kayda ◽  
Jiahua Qian ◽  
...  

Hemophilia A is caused by a deficiency of blood coagulation factor VIII (FVIII) and has been widely discussed as a candidate for gene therapy. While the natural canine model of hemophilia A has been valuable for the development of FVIII pharmaceutical products, the use of hemophiliac dogs for gene therapy studies has several limitations such as expense and the long canine generation time. The recent creation of two strains of FVIII-deficient mice provides the first small animal model of hemophilia A. Treatment of hemophiliac mice of both genotypes with potent, human FVIII-encoding adenoviral vectors resulted in expression of biologically active human FVIII at levels, which declined, but remained above the human therapeutic range for over 9 months. The duration of expression and FVIII plasma levels achieved were similar in both hemophiliac mouse strains. Treated mice readily survived tail clipping with minimal blood loss, thus showing phenotypic correction of murine hemophilia A by in vivo gene therapy.


Blood ◽  
2004 ◽  
Vol 103 (9) ◽  
pp. 3412-3419 ◽  
Author(s):  
Hongzhi Z. Miao ◽  
Nongnuch Sirachainan ◽  
Lisa Palmer ◽  
Phillip Kucab ◽  
Michael A. Cunningham ◽  
...  

Abstract Factor VIII (FVIII) functions as a cofactor within the intrinsic pathway of blood coagulation. Quantitative or qualitative deficiencies of FVIII result in the inherited bleeding disorder hemophilia A. Expression of FVIII (domain structure A1-A2-B-A3-C1-C2) in heterologous mammalian systems is 2 to 3 orders of magnitude less efficient compared with other proteins of similar size compromising recombinant FVIII production and gene therapy strategies. FVIII expression is limited by unstable mRNA, interaction with endoplasmic reticulum (ER) chaperones, and a requirement for facilitated ER to Golgi transport through interaction with the mannose-binding lectin LMAN1. Bioengineering strategies can overcome each of these limitations. B-domain-deleted (BDD)-FVIII yields higher mRNA levels, and targeted point mutations within the A1 domain reduce interaction with the ER chaperone immunoglobulin-binding protein. In order to increase ER to Golgi transport we engineered several asparagine-linked oligosaccharides within a short B-domain spacer within BDD-FVIII. A bioengineered FVIII incorporating all of these elements was secreted 15- to 25-fold more efficiently than full-length FVIII both in vitro and in vivo. FVIII bioengineered for improved secretion will significantly increase potential for success in gene therapy strategies for hemophilia A as well as improve recombinant FVIII production in cell culture manufacturing or transgenic animals. (Blood. 2004;103: 3412-3419)


Blood ◽  
2002 ◽  
Vol 99 (2) ◽  
pp. 457-462 ◽  
Author(s):  
Yi Lin ◽  
Liming Chang ◽  
Anna Solovey ◽  
John F. Healey ◽  
Pete Lollar ◽  
...  

Abstract A culture of human blood outgrowth endothelial cells (BOECs) was established from a sample of peripheral blood and was transfected using a nonviral plasmid carrying complementary DNA for modified human coagulation factor VIII (B domain deleted and replaced with green fluorescence protein). BOECs were then chemically selected, expanded, cryopreserved, and re-expanded in culture. Stably transfected BOECs were administered intravenously daily for 3 days to NOD/SCID mice at 4 cell dose levels (from 5 × 104 to 40 × 104 cells per injection). In 156 days of observation, mice showed levels of human FVIII that increased with cell dose and time. Mice in all cell dose groups achieved therapeutic levels (more than 10 ng/mL) of human FVIII, and mice in the 3 highest dose groups acquired levels that were normal (100-200 ng/mL) or even above the normal range (highest observed value, 1174 ng/mL). These levels indicate that the BOECs expanded in vivo after administration. When the mice were killed, it was found that BOEC accumulated only in bone marrow and spleen and that these cells retained endothelial phenotype and transgene expression. Cell doses used here would make scale-up to humans feasible. Thus, the use of engineered autologous BOECs, which here resulted in sustained and therapeutic levels of FVIII, may comprise an effective therapeutic strategy for use in gene therapy for hemophilia A.


Author(s):  
Sanchuan Luo ◽  
Zhongxiang Li ◽  
Xin Dai ◽  
Rui Zhang ◽  
Zhibing Liang ◽  
...  

Hemophilia A (HA), a common bleeding disorder caused by a deficiency of coagulation factor VIII (FVIII), has long been considered an attractive target for gene therapy studies. However, full-length F8 cDNA cannot be packaged efficiently by adeno-associated virus (AAV) vectors. As the second most prevalent mutation causing severe HA, F8 intron 1 inversion (Inv1) is caused by an intrachromosomal recombination, leaving the majority of F8 (exons 2–26) untranscribed. In theory, the truncated gene could be rescued by integrating a promoter and the coding sequence of exon 1. To test this strategy in vivo, we generated an HA mouse model by deleting the promoter region and exon 1 of F8. Donor DNA and CRISPR/SaCas9 were packaged into AAV vectors and injected into HA mice intravenously. After treatment, F8 expression was restored and activated partial thromboplastin time (aPTT) was shortened. We also compared two liver-specific promoters and two types of integrating donor vectors. When an active promoter was used, all of the treated mice survived the tail-clip challenge. This is the first report of an in vivo gene repair strategy with the potential to treat a recurrent mutation in HA patients.


Blood ◽  
1996 ◽  
Vol 88 (10) ◽  
pp. 3846-3853 ◽  
Author(s):  
S Connelly ◽  
J Mount ◽  
A Mauser ◽  
JM Gardner ◽  
M Kaleko ◽  
...  

Hemophilia A is a severe bleeding disorder caused by a deficiency in clotting factor VIII (FVIII). A canine model that closely mimics the human disease was used to determine if an adenoviral vector expressing a human FVIII cDNA could be used to correct the hemophilia A phenotype. Within 48 hours after peripheral vein administration of the vector to FVIII-deficient dogs, the hemophilic phenotype was corrected, based on determination of the activated clotting time, the activated partial thromboplastin time, and the cuticle bleeding time. Direct measurement of human FVIII in the dog plasma showed FVIII expression at amounts well above the human therapeutic level. FVIII expression in treated dogs was short-term, lasting 1 to 2 weeks, due to the development of a human FVIII-specific inhibitor antibody response. These data provide the first demonstration of in vivo gene therapy of hemophilia A.


2021 ◽  
Vol 18 ◽  
pp. 347-354
Author(s):  
Masashi Noda ◽  
Kohei Tatsumi ◽  
Hideto Matsui ◽  
Yasunori Matsunari ◽  
Takeshi Sato ◽  
...  

Blood ◽  
2009 ◽  
Vol 113 (16) ◽  
pp. 3682-3689 ◽  
Author(s):  
Paris Margaritis ◽  
Elise Roy ◽  
Majed N. Aljamali ◽  
Harre D. Downey ◽  
Urs Giger ◽  
...  

Abstract Continuous expression of activated factor VII (FVIIa) via gene transfer is a potential therapeutic approach for hemophilia patients with or without inhibitory antibodies to human factor VIII (FVIII) or IX (FIX). Here, we investigate whether gene transfer of an engineered canine FVIIa (cFVIIa) transgene can affect hemostasis in a canine model of hemophilia, a good predictor of efficacy of hemophilia treatments. Purified recombinant cFVIIa exhibited 12-fold higher tissue factor–dependent activity than purified recombinant zymogen cFVII. Subsequently, we generated a serotype 8 recombinant adeno-associated viral vector expressing cFVIIa from a liver-specific promoter. Vector delivery via the portal vein in hemophilia A and B dogs was well tolerated, and long-term expression of cFVIIa resulted in a shortening of the prothrombin time, partial correction of the whole blood clotting time and thromboelastography parameters, and a complete absence of spontaneous bleeding episodes. No evidence of hepatotoxicity, thrombotic complications, or inhibitory immune response was found. These data provide the first evidence for in vivo efficacy and safety of continuously expressed FVIIa as a FVIII/FIX-bypassing agent in a large animal model of hemophilia, avoiding the risk of inhibitor formation associated with bolus FVIII or FIX infusion.


1999 ◽  
Vol 82 (08) ◽  
pp. 555-561 ◽  
Author(s):  
Douglas Jolly ◽  
Judith Greengard

IntroductionHemophilia A results from the plasma deficiency of factor VIII, a gene carried on the X chromosome. Bleeding results from a lack of coagulation factor VIII, a large and complex protein that circulates in complex with its carrier, von Willebrand factor (vWF).1 Severe hemophilia A (<1% of normal circulating levels) is associated with a high degree of mortality, due to spontaneous and trauma-induced, life-threatening and crippling bleeding episodes.2 Current treatment in the United States consists of infusion of plasma-derived or recombinant factor VIII in response to bleeding episodes.3 Such treatment fails to prevent cumulative joint damage, a major cause of hemophilia-associated morbidity.4 Availability of prophylactic treatment, which would reduce the number and severity of bleeding episodes and, consequently, would limit such joint damage, is limited by cost and the problems associated with repeated venous access. Other problems are associated with frequent replacement treatment, including the dangers of transmission of blood-borne infections derived from plasma used as a source of factor VIII or tissue culture or formulation components. These dangers are reduced, but not eliminated, by current manufacturing techniques. Furthermore, approximately 1 in 5 patients with severe hemophilia treated with recombinant or plasma-derived factor VIII develop inhibitory humoral immune responses. In some cases, new inhibitors have developed, apparently in response to unnatural modifications introduced during manufacture or purification.5 Gene therapy could circumvent most of these difficulties. In theory, a single injection of a vector encoding the factor VIII gene could provide constant plasma levels of factor in the long term. However, long-term expression after gene transfer of a systemically expressed protein in higher mammals has seldom been described. In some cases, a vector that appeared promising in a rodent model has not worked well in larger animals, for example, due to a massive immune response not seen in the rodent.6 An excellent review of early efforts at factor VIII gene therapy appeared in an earlier volume of this series.7 A summary of results from various in vivo experiments is shown in Table 1. This chapter will focus on results pertaining to studies using vectors based on murine retroviruses, including our own work.


Urology ◽  
2007 ◽  
Vol 70 (4) ◽  
pp. 822-825 ◽  
Author(s):  
Wassim Kassouf ◽  
Gordon A. Brown ◽  
Anil Shetty ◽  
John D. Hazle ◽  
R. Jason Stafford ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document