Mechanism of Interleukin-10 Inhibition of T-Helper Cell Activation by Superantigen at the Level of the Cell Cycle

Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 208-216 ◽  
Author(s):  
George Q. Perrin ◽  
Howard M. Johnson ◽  
Prem S. Subramaniam

Abstract We have analyzed the effects of interleukin-10 (IL-10) on the entry of quiescent CD4+ T cells into the cell cycle upon stimulation with the superantigen staphylococcal enterotoxin B (SEB). IL-10 arrested cells at G0/G1. IL-10 treatment prevented the downregulation of p27Kip1, an inhibitory protein that controls progression out of the G0 phase of the cell cycle. IL-10 also prevented the upregulation of the G1 cyclins D2 and D3, proteins necessary for entry and progression through the G1 phase of the cell cycle. Associated with the inhibition of the cell cycle, IL-10 suppressed SEB induction of interleukin-2 (IL-2). Addition of exogenous IL-2 to IL-10–treated cells significantly reversed the antiproliferative effects of IL-10. Moreover, IL-10 effects on the early G1proteins p27Kip1 and cyclin D2 were similarly reversed by exogenous IL-2. Although this reversal by IL-2 was pronounced, it was not complete, suggesting that IL-10 may have some effects not directly related to the suppression of IL-2 production. Cell separation experiments suggest that IL-10 can effect purified CD4+ T cells directly, providing functional evidence for the presence of IL-10 receptors on CD4+ T cells. IL-10 also inhibited expression of IL-2 transcriptional regulators c-fos and c-jun, which also inhibit other cell functions. Our studies show that the mechanism of IL-10 regulation of quiescent CD4+ T-cell activation is mainly by blocking induction of IL-2 that is critical to downregulation of p27Kip1 and upregulation of D cyclins in T-cell activation and entry into the cell cycle.

Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 208-216
Author(s):  
George Q. Perrin ◽  
Howard M. Johnson ◽  
Prem S. Subramaniam

We have analyzed the effects of interleukin-10 (IL-10) on the entry of quiescent CD4+ T cells into the cell cycle upon stimulation with the superantigen staphylococcal enterotoxin B (SEB). IL-10 arrested cells at G0/G1. IL-10 treatment prevented the downregulation of p27Kip1, an inhibitory protein that controls progression out of the G0 phase of the cell cycle. IL-10 also prevented the upregulation of the G1 cyclins D2 and D3, proteins necessary for entry and progression through the G1 phase of the cell cycle. Associated with the inhibition of the cell cycle, IL-10 suppressed SEB induction of interleukin-2 (IL-2). Addition of exogenous IL-2 to IL-10–treated cells significantly reversed the antiproliferative effects of IL-10. Moreover, IL-10 effects on the early G1proteins p27Kip1 and cyclin D2 were similarly reversed by exogenous IL-2. Although this reversal by IL-2 was pronounced, it was not complete, suggesting that IL-10 may have some effects not directly related to the suppression of IL-2 production. Cell separation experiments suggest that IL-10 can effect purified CD4+ T cells directly, providing functional evidence for the presence of IL-10 receptors on CD4+ T cells. IL-10 also inhibited expression of IL-2 transcriptional regulators c-fos and c-jun, which also inhibit other cell functions. Our studies show that the mechanism of IL-10 regulation of quiescent CD4+ T-cell activation is mainly by blocking induction of IL-2 that is critical to downregulation of p27Kip1 and upregulation of D cyclins in T-cell activation and entry into the cell cycle.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3901-3901
Author(s):  
Sara Trabanelli ◽  
Darina Očadlíková ◽  
Sara Gulinelli ◽  
Antonio Curti ◽  
Francesco di Virgilio ◽  
...  

Abstract Abstract 3901 Adenosine 5'-triphosphate (ATP) is emerging as an extracellular signaling molecule playing a pivotal role in several cellular processes, through specific cell membrane purinergic P2 receptors (P2Rs). Under physiological conditions, ATP is present in the extracellular space at low concentrations (1-10 nM), whereas during inflammation and tumor cell growth ATP is present in the extracellular space at high concentrations, when 5–10 mM of ATP are quickly released from cytoplasm following plasma membrane damage or membrane stretching. For these reasons, extracellular ATP, via activation of P2Rs, might be an important regulator of inflammatory and immune response. CD4+ T cells are often exposed to different ATP concentrations in healthy or in injured/inflamed tissues. In the present study, we investigated the expression of purinergic P2 receptors (P2Rs) on human activated and regulatory CD4+ T cells and tested the lymphocyte functions in presence of low (1-10 nM), intermediate (250 nM) and high (1 mM) concentration of extracellular ATP. We assessed CD4+ T cells proliferation, apoptosis, phenotype, cytokine release, migration and matrix/cells adhesion. We show that activated CD4+ T cells express all P2Rs subtypes, whereas Tregs do not express P2X6 and P2Y2. At a functional level, low concentrations of extracellular ATP do not modulate CD4+ T cell functions. An increase in ATP concentration (250 nM) stimulates CD4+ T cells during activation: activated CD4+ T cells enhance their proliferation, the secretion of several cytokines critical for T cell functions (IL-2, IL-1b, IFN-g, IL-8), the expression of adhesion molecules (CD49d and CD54) and the capacity to adhere to cellular matrix or to other cells. Tregs seem to be unaffected by 250 nM of ATP. In contrast, high concentrations of ATP (1 mM) “turn off” activated CD4+ T cells and “turn on” Tregs. 1 mM of ATP inhibits activation of CD4+ T cells, by enhancing apoptosis and diminishing proliferation, cell-adhesion and the release of pro-inflammatory cytokines. Conversely, 1 mM of ATP attracts Tregs and stimulates their proliferation and their capacity to adhere to other cells. Moreover, Tregs cultured in presence of 1 mM of extracellular ATP are more efficient in inhibiting T cell proliferation. In summary, the present data show that the concentration of extracellular ATP regulates CD4+ T cell functions. Low ATP concentrations, as in physiological conditions, do not affect CD4+ T cell functions, whereas any enhancement of ATP concentration alters CD4+ T cell behavior. Specifically, a small increase stimulates CD4+ T cell activation, whereas a high increase inhibits CD4+ T cell activation and promotes the immunosuppression Tregs-mediated. We propose that the present in vitro data might explain how in vivo ATP regulates the behavior of activated CD4+ T cells and Tregs in case of inflammation or tumor cell growth. A small enhancement of ATP concentration occurs at the beginning of an inflammatory state or at the first stages of tumor growth; these ATP concentrations alert CD4+ T cells to the presence of a possible damage, which does not yet require Tregs involvement. In contrast, in case of severe inflammation, high ATP concentrations might prevent a further involvement of activated CD4+ T cells and promotes Tregs recruitment, avoiding hyper-inflammation. In case of advanced stages of tumorigenesis, high ATP concentration might be a tumor-escape mechanism, by killing activated CD4+ T cells and by attracting Tregs to surround the tumor. Disclosures: No relevant conflicts of interest to declare.


1992 ◽  
Vol 282 (3) ◽  
pp. 759-764 ◽  
Author(s):  
G A Evans ◽  
L M Wahl ◽  
W L Farrar

The state of phosphorylation of the retinoblastoma-susceptibility gene product, p110-115RB, is thought to have fundamental importance in controlling the progression of the cell through the cell cycle. We have studied RB phosphorylation in human T-cells in the context of T-cell activation, stimulated by phytohaemagglutinin (PHA) and interleukin-2 (IL-2). We show that, of the signals associated with T-cell activation, only signals that directly lead to movement into S phase of the cell cycle are capable of stimulating RB phosphorylation. Cyclosporin A (CsA), a potent inhibitor of IL-2 synthesis and cellular proliferation, blocked RB phosphorylation, and this was recovered with exogenous IL-2, indicating a direct involvement of IL-2 in controlling RB phosphorylation. We found that PHA did not stimulate RB phosphorylation within 10 h of treatment, but IL-2 could effectively stimulate RB phosphorylation within 2 h, and this approached a maximum within 8-10 h of IL-2 treatment. Further, by using actinomycin D to inhibit new gene transcription following IL-2 stimulation, we found that early-cell-cycle phosphorylation of RB required IL-2-stimulated gene transcription. From these data we conclude that, in human T-cells, RB phosphorylation is not directly associated with T-cell receptor-mediated events, but requires the interaction of IL-2 and new gene transcription following IL-2 stimulation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2767-2767
Author(s):  
J. Katrin Hunger ◽  
Susanne Pfoertner ◽  
Philipp Ivanyi ◽  
Juergen Krauter ◽  
Arnold Ganser ◽  
...  

Abstract Background and Aims: Although leukemic cells express tumor-associated antigens, suppression of an effective T cell immune response is a well known phenomenon in acute myeloid leukemia (AML). In principle, the malignant cells may escape immune surveillance by (1) incomplete T cell activation due to the absence of costimulatory molecules on the leukemic cell types, (2) secretion of soluble immunosuppressive factors, which may lead among others to (3) induction of anergic and/or regulatory T cell phenotypes. A better understanding of the underlying mechanism would have important implications for the development of immunotherapeutic strategies. Methods: CD3+ T cells were analyzed for activation, proliferation and Th1 cytokine production after coculturing with primary AML cells or leukemic cell supernatant. In addition, self-developed human Treg microarrays were used to reveal a gene expression profile of CD4+ T cells isolated from untreated AML patients (n=7) in comparison to CD4+ T cells from healthy volunteers (n=6) and AML patients after achieving a complete remission (n=4). The specific regulation of selected canditate genes was confirmed by realtime RT-PCR. Based on microarray results cell-cycle analyses were performed in order to study the effect of primary AML cells on the cell-cycle progression of stimulated T-cells. Results: Our studies could show that primary AML cells suppress T cell activation, proliferation and Th1 cytokines production mainly in a cell-contact dependent manner and to a minor degree via soluble factors. Nevertheless, cell-cycle analyses demonstrated that soluble factors from leukemic cell supernatants may inhibit the cell-cycle entry of T cells after mitogenic stimulation with an arrest in G0/G1 phase. Interestingly, the molecular profile of CD4+ T cells isolated from untreated AML patients could identify a profound dysregulation of molecules involved in the regulation of cell-cycle (i.e., CDK4, Vav2, Egr-1, Id2) and apoptosis (i.e., Bcl-2, Bax). In addition, genes important for the immune response (i.e., IL2R, CTLA-4), especially various chemokines/-receptors (i.e., RANTES, CXCL10, CCR2) were dysregulated, whereas the expression pattern of genes specific for regulatory T cells (i.e., FoxP3, PD-1, GITR) were broadly unaffected. Conclusion: AML cells (in-)/directly modulate normal T cell function such as activation, proliferation, cytokine/chemokine production and cell-cycle regulation. One might speculate that the lack of an effective anti-tumor response is associated with a cell-cycle arrest resulting in T cell anergy. Cell-cycle regulators may serve as potential targets for novel immunotherapeutic strategies to eradicate minimal residual disease in patients with AML.


1983 ◽  
Vol 157 (2) ◽  
pp. 461-472 ◽  
Author(s):  
T Cotner ◽  
J M Williams ◽  
L Christenson ◽  
H M Shapiro ◽  
T B Strom ◽  
...  

Cell-surface antigens that are induced to appear on T cells activated by the lectin phytohemagglutinin-P (PHA) can be classified both on the basis of the kinetics of their appearance and on their growth-association properties. Seven distinct T cell activation antigens, defined by monoclonal antibodies, were classified as early, intermediate, or late antigens based on their temporal appearance relative to DNA synthesis. Four antigens, the transferrin receptor, the T cell activation antigen Tac, the 4F2 antigen, and the 49.9 antigen were early antigens, whereas the OKT10 antigen appeared at intermediate times and both HLA-DR and antigen 19.2 appeared late. The use of a dye, Hoechst 33342, which stains DNA stoichiometrically, allowed the simultaneous analysis of immunofluorescence and cell cycle position of individual cells. This analysis unexpectedly revealed that essentially all cells in the proliferative phase of the cell cycle expressed each of the four early-activation antigens. The correlation between expression of the four early-activation antigens and T cell proliferation suggests that these molecules are important for the growth of all T cells. The relationship of two of these activation antigens, known to be the receptors for transferrin and interleukin 2, a T cell growth factor, is discussed with special reference to the roles of their ligands in supporting the growth of T cells.


2013 ◽  
Vol 210 (8) ◽  
pp. 1603-1619 ◽  
Author(s):  
Marc Martínez-Llordella ◽  
Jonathan H. Esensten ◽  
Samantha L. Bailey-Bucktrout ◽  
Robert H. Lipsky ◽  
Ann Marini ◽  
...  

During the initial hours after activation, CD4+ T cells experience profound changes in gene expression. Co-stimulation via the CD28 receptor is required for efficient activation of naive T cells. However, the transcriptional consequences of CD28 co-stimulation are not completely understood. We performed expression microarray analysis to elucidate the effects of CD28 signals on the transcriptome of activated T cells. We show that the transcription factor DEC1 is highly induced in a CD28-dependent manner upon T cell activation, is involved in essential CD4+ effector T cell functions, and participates in the transcriptional regulation of several T cell activation pathways, including a large group of CD28-regulated genes. Antigen-specific, DEC1-deficient CD4+ T cells have cell-intrinsic defects in survival and proliferation. Furthermore, we found that DEC1 is required for the development of experimental autoimmune encephalomyelitis because of its critical role in the production of the proinflammatory cytokines GM-CSF, IFN-γ, and IL-2. Thus, we identify DEC1 as a critical transcriptional mediator in the activation of naive CD4+ T cells that is required for the development of a T cell–mediated autoimmune disease.


Blood ◽  
2006 ◽  
Vol 108 (8) ◽  
pp. 2695-2702 ◽  
Author(s):  
Valeriu B. Cismasiu ◽  
Sailaja Ghanta ◽  
Javier Duque ◽  
Diana I. Albu ◽  
Hong-Mei Chen ◽  
...  

AbstractBCL11A and BCL11B are transcriptional regulators important for lymphopoiesis and previously associated with hematopoietic malignancies. Ablation of the mouse Bcl11b locus results in failure to generate double-positive thymocytes, implicating a critical role of Bcl11b in T-cell development. However, BCL11B is also expressed in CD4+ T lymphocytes, both in resting and activated states. Here we show both in transformed and primary CD4+ T cells that BCL11B participates in the control of the interleukin-2 (IL2) gene expression following activation through T-cell receptor (TCR). BCL11B augments expression from the IL2 promoter through direct binding to the US1 site. In addition, BCL11B associates with the p300 coactivator in CD4+ T cells activated through TCR, which may account for its transcriptional activation function. These results provide the first evidence that BCL11B, originally described as a transcriptional repressor, activates transcription of a target gene in the context of T-cell activation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rhianna Jones ◽  
Kyle Kroll ◽  
Courtney Broedlow ◽  
Luca Schifanella ◽  
Scott Smith ◽  
...  

AbstractHIV/SIV infections lead to massive loss of mucosal CD4 + T cells and breakdown of the epithelial mucosa resulting in severe microbial dysbiosis and chronic immune activation that ultimately drive disease progression. Moreover, disruption of one of the most understudied mucosal environments, the oral cavity, during HIV-induced immunosuppression results in significant microbial and neoplastic co-morbidities and contributes to and predicts distal disease complications. In this study we evaluated the effects of oral probiotic supplementation (PBX), which can stimulate and augment inflammatory or anti-inflammatory pathways, on early SIV infection of rhesus macaques. Our study revealed that similar to the GI mucosae, oral CD4 + T cells were rapidly depleted, and as one of the first comprehensive analyses of the oral microflora in SIV infection, we also observed significant modulation among two genera, Porphyromonas and Actinobacillus, early after infection. Interestingly, although PBX therapy did not substantially protect against oral dysbiosis or ameliorate cell loss, it did somewhat dampen inflammation and T cell activation. Collectively, these data provide one of the most comprehensive evaluations of SIV-induced changes in oral microbiome and CD4 + T cell populations, and also suggest that oral PBX may have some anti-inflammatory properties in lentivirus infections.


Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2396-2402 ◽  
Author(s):  
Anna Cambiaggi ◽  
Sylvie Darche ◽  
Sophie Guia ◽  
Philippe Kourilsky ◽  
Jean-Pierre Abastado ◽  
...  

In humans, a minor subset of T cells express killer cell Ig-like receptors (KIRs) at their surface. In vitro data obtained with KIR+ β and γδ T-cell clones showed that engagement of KIR molecules can extinguish T-cell activation signals induced via the CD3/T-cell receptor (TCR) complex. We analyzed the T-cell compartment in mice transgenic for KIR2DL3 (Tg-KIR2DL3), an inhibitory receptor for HLA-Cw3. As expected, mixed lymphocyte reaction and anti-CD3 monoclonal antibody (MoAb)-redirected cytotoxicity exerted by freshly isolated splenocytes can be inhibited by engagement of transgenic KIR2DL3 molecules. In contrast, antigen and anti-CD3 MoAb-induced cytotoxicity exerted by alloreactive cytotoxic T lymphocytes cannot be inhibited by KIR2DL3 engagement. In double transgenic mice, Tg-KIR2DL3 × Tg-HLA-Cw3, no alteration of thymic differentiation could be documented. Immunization of double transgenic mice with Hen egg white lysozime (HEL) or Pigeon Cytochrome-C (PCC) was indistinguishable from immunization of control mice, as judged by recall antigen-induced in vitro proliferation and TCR repertoire analysis. These results indicate that KIR effect on T cells varies upon cell activation stage and show unexpected complexity in the biological function of KIRs in vivo.


1993 ◽  
Vol 177 (6) ◽  
pp. 1791-1796 ◽  
Author(s):  
F A Harding ◽  
J P Allison

The activation requirements for the generation of CD8+ cytotoxic T cells (CTL) are poorly understood. Here we demonstrate that in the absence of exogenous help, a CD28-B7 interaction is necessary and sufficient for generation of class I major histocompatibility complex-specific CTL. Costimulation is required only during the inductive phase of the response, and not during the effector phase. Transfection of the CD28 counter receptor, B7, into nonstimulatory P815 cells confers the ability to elicit P815-specific CTL, and this response can be inhibited by anti-CD28 Fab or by the chimeric B7-binding protein CTLA4Ig. Anti-CD28 monoclonal antibody (mAb) can provide a costimulatory signal to CD8+ T cells when the costimulatory capacity of splenic stimulators is destroyed by chemical fixation. CD28-mediated signaling provokes the release of interleukin 2 (IL-2) from the CD8+ CTL precursors, as anti-CD28 mAb could be substituted for by the addition of IL-2, and an anti-IL-2 mAb can block the generation of anti-CD28-induced CTL. CD4+ cells are not involved in the costimulatory response in the systems examined. We conclude that CD8+ T cell activation requires two signals: an antigen-specific signal mediated by the T cell receptor, and an additional antigen nonspecific signal provided via a CD28-B7 interaction.


Sign in / Sign up

Export Citation Format

Share Document