scholarly journals CD28-inducible transcription factor DEC1 is required for efficient autoreactive CD4+ T cell response

2013 ◽  
Vol 210 (8) ◽  
pp. 1603-1619 ◽  
Author(s):  
Marc Martínez-Llordella ◽  
Jonathan H. Esensten ◽  
Samantha L. Bailey-Bucktrout ◽  
Robert H. Lipsky ◽  
Ann Marini ◽  
...  

During the initial hours after activation, CD4+ T cells experience profound changes in gene expression. Co-stimulation via the CD28 receptor is required for efficient activation of naive T cells. However, the transcriptional consequences of CD28 co-stimulation are not completely understood. We performed expression microarray analysis to elucidate the effects of CD28 signals on the transcriptome of activated T cells. We show that the transcription factor DEC1 is highly induced in a CD28-dependent manner upon T cell activation, is involved in essential CD4+ effector T cell functions, and participates in the transcriptional regulation of several T cell activation pathways, including a large group of CD28-regulated genes. Antigen-specific, DEC1-deficient CD4+ T cells have cell-intrinsic defects in survival and proliferation. Furthermore, we found that DEC1 is required for the development of experimental autoimmune encephalomyelitis because of its critical role in the production of the proinflammatory cytokines GM-CSF, IFN-γ, and IL-2. Thus, we identify DEC1 as a critical transcriptional mediator in the activation of naive CD4+ T cells that is required for the development of a T cell–mediated autoimmune disease.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3901-3901
Author(s):  
Sara Trabanelli ◽  
Darina Očadlíková ◽  
Sara Gulinelli ◽  
Antonio Curti ◽  
Francesco di Virgilio ◽  
...  

Abstract Abstract 3901 Adenosine 5'-triphosphate (ATP) is emerging as an extracellular signaling molecule playing a pivotal role in several cellular processes, through specific cell membrane purinergic P2 receptors (P2Rs). Under physiological conditions, ATP is present in the extracellular space at low concentrations (1-10 nM), whereas during inflammation and tumor cell growth ATP is present in the extracellular space at high concentrations, when 5–10 mM of ATP are quickly released from cytoplasm following plasma membrane damage or membrane stretching. For these reasons, extracellular ATP, via activation of P2Rs, might be an important regulator of inflammatory and immune response. CD4+ T cells are often exposed to different ATP concentrations in healthy or in injured/inflamed tissues. In the present study, we investigated the expression of purinergic P2 receptors (P2Rs) on human activated and regulatory CD4+ T cells and tested the lymphocyte functions in presence of low (1-10 nM), intermediate (250 nM) and high (1 mM) concentration of extracellular ATP. We assessed CD4+ T cells proliferation, apoptosis, phenotype, cytokine release, migration and matrix/cells adhesion. We show that activated CD4+ T cells express all P2Rs subtypes, whereas Tregs do not express P2X6 and P2Y2. At a functional level, low concentrations of extracellular ATP do not modulate CD4+ T cell functions. An increase in ATP concentration (250 nM) stimulates CD4+ T cells during activation: activated CD4+ T cells enhance their proliferation, the secretion of several cytokines critical for T cell functions (IL-2, IL-1b, IFN-g, IL-8), the expression of adhesion molecules (CD49d and CD54) and the capacity to adhere to cellular matrix or to other cells. Tregs seem to be unaffected by 250 nM of ATP. In contrast, high concentrations of ATP (1 mM) “turn off” activated CD4+ T cells and “turn on” Tregs. 1 mM of ATP inhibits activation of CD4+ T cells, by enhancing apoptosis and diminishing proliferation, cell-adhesion and the release of pro-inflammatory cytokines. Conversely, 1 mM of ATP attracts Tregs and stimulates their proliferation and their capacity to adhere to other cells. Moreover, Tregs cultured in presence of 1 mM of extracellular ATP are more efficient in inhibiting T cell proliferation. In summary, the present data show that the concentration of extracellular ATP regulates CD4+ T cell functions. Low ATP concentrations, as in physiological conditions, do not affect CD4+ T cell functions, whereas any enhancement of ATP concentration alters CD4+ T cell behavior. Specifically, a small increase stimulates CD4+ T cell activation, whereas a high increase inhibits CD4+ T cell activation and promotes the immunosuppression Tregs-mediated. We propose that the present in vitro data might explain how in vivo ATP regulates the behavior of activated CD4+ T cells and Tregs in case of inflammation or tumor cell growth. A small enhancement of ATP concentration occurs at the beginning of an inflammatory state or at the first stages of tumor growth; these ATP concentrations alert CD4+ T cells to the presence of a possible damage, which does not yet require Tregs involvement. In contrast, in case of severe inflammation, high ATP concentrations might prevent a further involvement of activated CD4+ T cells and promotes Tregs recruitment, avoiding hyper-inflammation. In case of advanced stages of tumorigenesis, high ATP concentration might be a tumor-escape mechanism, by killing activated CD4+ T cells and by attracting Tregs to surround the tumor. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 208-216 ◽  
Author(s):  
George Q. Perrin ◽  
Howard M. Johnson ◽  
Prem S. Subramaniam

Abstract We have analyzed the effects of interleukin-10 (IL-10) on the entry of quiescent CD4+ T cells into the cell cycle upon stimulation with the superantigen staphylococcal enterotoxin B (SEB). IL-10 arrested cells at G0/G1. IL-10 treatment prevented the downregulation of p27Kip1, an inhibitory protein that controls progression out of the G0 phase of the cell cycle. IL-10 also prevented the upregulation of the G1 cyclins D2 and D3, proteins necessary for entry and progression through the G1 phase of the cell cycle. Associated with the inhibition of the cell cycle, IL-10 suppressed SEB induction of interleukin-2 (IL-2). Addition of exogenous IL-2 to IL-10–treated cells significantly reversed the antiproliferative effects of IL-10. Moreover, IL-10 effects on the early G1proteins p27Kip1 and cyclin D2 were similarly reversed by exogenous IL-2. Although this reversal by IL-2 was pronounced, it was not complete, suggesting that IL-10 may have some effects not directly related to the suppression of IL-2 production. Cell separation experiments suggest that IL-10 can effect purified CD4+ T cells directly, providing functional evidence for the presence of IL-10 receptors on CD4+ T cells. IL-10 also inhibited expression of IL-2 transcriptional regulators c-fos and c-jun, which also inhibit other cell functions. Our studies show that the mechanism of IL-10 regulation of quiescent CD4+ T-cell activation is mainly by blocking induction of IL-2 that is critical to downregulation of p27Kip1 and upregulation of D cyclins in T-cell activation and entry into the cell cycle.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 208-216
Author(s):  
George Q. Perrin ◽  
Howard M. Johnson ◽  
Prem S. Subramaniam

We have analyzed the effects of interleukin-10 (IL-10) on the entry of quiescent CD4+ T cells into the cell cycle upon stimulation with the superantigen staphylococcal enterotoxin B (SEB). IL-10 arrested cells at G0/G1. IL-10 treatment prevented the downregulation of p27Kip1, an inhibitory protein that controls progression out of the G0 phase of the cell cycle. IL-10 also prevented the upregulation of the G1 cyclins D2 and D3, proteins necessary for entry and progression through the G1 phase of the cell cycle. Associated with the inhibition of the cell cycle, IL-10 suppressed SEB induction of interleukin-2 (IL-2). Addition of exogenous IL-2 to IL-10–treated cells significantly reversed the antiproliferative effects of IL-10. Moreover, IL-10 effects on the early G1proteins p27Kip1 and cyclin D2 were similarly reversed by exogenous IL-2. Although this reversal by IL-2 was pronounced, it was not complete, suggesting that IL-10 may have some effects not directly related to the suppression of IL-2 production. Cell separation experiments suggest that IL-10 can effect purified CD4+ T cells directly, providing functional evidence for the presence of IL-10 receptors on CD4+ T cells. IL-10 also inhibited expression of IL-2 transcriptional regulators c-fos and c-jun, which also inhibit other cell functions. Our studies show that the mechanism of IL-10 regulation of quiescent CD4+ T-cell activation is mainly by blocking induction of IL-2 that is critical to downregulation of p27Kip1 and upregulation of D cyclins in T-cell activation and entry into the cell cycle.


1997 ◽  
Vol 185 (7) ◽  
pp. 1327-1336 ◽  
Author(s):  
Yan Wu ◽  
Yong Guo ◽  
Andy Huang ◽  
Pan Zheng ◽  
Yang Liu

T cell costimulation, particularly by the B7 family members B7-1 and B7-2, plays a critical role in regulating T cell–mediated immunity. Two molecules on T cells, CD28 and CTLA-4, are known to bind to B7. It has been suggested that CD28–B7 interaction promotes T cell response, whereas B7–CTLA-4 interaction downregulates T cell clonal expansion. However, the proposed responses of individual receptors to B7 have not been verified directly. Here, we report that B7-1 promotes clonal expansion of CD28-deficient T cells, and that the CD28-independent costimulatory activity is mediated by CTLA-4, as it is completely blocked by intact and Fab of anti–CTLA-4 mAb. In addition, a mutant B7-1 molecule, B7W88 >A, which has lost binding to CD28 but retained significant CTLA-4 binding activity, promotes T cell clonal expansion. Furthermore, while presence of CD28 enhances T cell response to B7-1, such response is also completely blocked by anti–CTLA-4 mAb. Taken together, our results demonstrate that B7–CTLA-4 interaction promotes T cell clonal expansion, and that optimal T cell response to B7 is achieved when both CD28 and CTLA-4 interact with B7. These results establish an important function of CTLA-4 in promoting T cell activation, and suggest an alternative interpretation of the function of CTLA-4 in T cell activation.


Blood ◽  
2006 ◽  
Vol 108 (8) ◽  
pp. 2695-2702 ◽  
Author(s):  
Valeriu B. Cismasiu ◽  
Sailaja Ghanta ◽  
Javier Duque ◽  
Diana I. Albu ◽  
Hong-Mei Chen ◽  
...  

AbstractBCL11A and BCL11B are transcriptional regulators important for lymphopoiesis and previously associated with hematopoietic malignancies. Ablation of the mouse Bcl11b locus results in failure to generate double-positive thymocytes, implicating a critical role of Bcl11b in T-cell development. However, BCL11B is also expressed in CD4+ T lymphocytes, both in resting and activated states. Here we show both in transformed and primary CD4+ T cells that BCL11B participates in the control of the interleukin-2 (IL2) gene expression following activation through T-cell receptor (TCR). BCL11B augments expression from the IL2 promoter through direct binding to the US1 site. In addition, BCL11B associates with the p300 coactivator in CD4+ T cells activated through TCR, which may account for its transcriptional activation function. These results provide the first evidence that BCL11B, originally described as a transcriptional repressor, activates transcription of a target gene in the context of T-cell activation.


2008 ◽  
Vol 205 (9) ◽  
pp. 2099-2110 ◽  
Author(s):  
Benno Weigmann ◽  
Hans A. Lehr ◽  
George Yancopoulos ◽  
David Valenzuela ◽  
Andrew Murphy ◽  
...  

The nuclear factor of activated T cells (NFAT) family of transcription factors controls calcium signaling in T lymphocytes. In this study, we have identified a crucial regulatory role of the transcription factor NFATc2 in T cell–dependent experimental colitis. Similar to ulcerative colitis in humans, the expression of NFATc2 was up-regulated in oxazolone-induced chronic intestinal inflammation. Furthermore, NFATc2 deficiency suppressed colitis induced by oxazolone administration. This finding was associated with enhanced T cell apoptosis in the lamina propria and strikingly reduced production of IL-6, -13, and -17 by mucosal T lymphocytes. Further studies using knockout mice showed that IL-6, rather than IL-23 and -17, are essential for oxazolone colitis induction. Administration of hyper-IL-6 blocked the protective effects of NFATc2 deficiency in experimental colitis, suggesting that IL-6 signal transduction plays a major pathogenic role in vivo. Finally, adoptive transfer of IL-6 and wild-type T cells demonstrated that oxazolone colitis is critically dependent on IL-6 production by T cells. Collectively, these results define a unique regulatory role for NFATc2 in colitis by controlling mucosal T cell activation in an IL-6–dependent manner. NFATc2 in T cells thus emerges as a potentially new therapeutic target for inflammatory bowel diseases.


2006 ◽  
Vol 26 (15) ◽  
pp. 5595-5602 ◽  
Author(s):  
Shekhar Srivastava ◽  
Kyung Ko ◽  
Papiya Choudhury ◽  
Zhai Li ◽  
Amanda K. Johnson ◽  
...  

ABSTRACT Intracellular Ca2+ levels rapidly rise following cross-linking of the T-cell receptor (TCR) and function as a critical intracellular second messenger in T-cell activation. It has been relatively under appreciated that K+ channels play an important role in Ca2+ influx into T lymphocytes by helping to maintain a negative membrane potential which provides an electrochemical gradient to drive Ca2+ influx. Here we show that the Ca2+-activated K+ channel, KCa3.1, which is critical for Ca2+ influx in reactivated naive T cells and central memory T cells, requires phosphatidylinositol-3 phosphatase [PI(3)P] for activation and is inhibited by the PI(3)P phosphatase myotubularin-related protein 6 (MTMR6). Moreover, by inhibiting KCa3.1, MTMR6 functions as a negative regulator of Ca2+ influx and proliferation of reactivated human CD4 T cells. These findings point to a new and unexpected role for PI(3)P and the PI(3)P phosphatase MTMR6 in the regulation of Ca2+ influx in activated CD4 T cells and suggest that MTMR6 plays a critical role in setting a minimum threshold for a stimulus to activate a T cell.


2021 ◽  
Author(s):  
Zachary J Waldrip ◽  
Lyle Burdine ◽  
David K Harrison ◽  
Ana Clara Azevedo-Pouly ◽  
Aaron J Storey ◽  
...  

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is known primarily for its function in DNA double-stranded break repair and non-homologous end joining (NHEJ). However, like other DNA damage repair kinases (DDR), DNA-PKcs also has a critical yet undefined role in immunity impacting both myeloid and lymphoid cell lineages spurring interest in targeting DNA-PKcs for therapeutic strategies in immune-related diseases. To gain insight into the function of DNA-PKcs within immune cells, we performed a quantitative phosphoproteomic screen in T cells to identify first order phosphorylation targets of DNA-PKcs. Results indicate that DNA-PKcs phosphorylates the transcription factor Egr1 (early growth response protein 1) at S301. Expression of Egr1 is induced early upon T cell activation and dictates T cell response by modulating expression of cytokines and key costimulatory molecules. Mutation of serine 301 to alanine via CRISPR-Cas9 resulted in increased proteasomal degradation of Egr1 and a decrease in Egr1-dependent transcription of IL2 (interleukin-2) in activated T cells. Our findings identify DNA-PKcs as a critical intermediary link between T cell activation and T cell fate and a novel phosphosite involved in regulating Egr1 activity.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Sarah Schäfer ◽  
Alma Zernecke

Atherosclerotic lesions are populated by cells of the innate and adaptive immune system, including CD8+ T cells. The CD8+ T cell infiltrate has recently been characterized in mouse and human atherosclerosis and revealed activated, cytotoxic, and possibly dysfunctional and exhausted cell phenotypes. In mouse models of atherosclerosis, antibody-mediated depletion of CD8+ T cells ameliorates atherosclerosis. CD8+ T cells control monopoiesis and macrophage accumulation in early atherosclerosis. In addition, CD8+ T cells exert cytotoxic functions in atherosclerotic plaques and contribute to macrophage cell death and necrotic core formation. CD8+ T cell activation may be antigen-specific, and epitopes of atherosclerosis-relevant antigens may be targets of CD8+ T cells and their cytotoxic activity. CD8+ T cell functions are tightly controlled by costimulatory and coinhibitory immune checkpoints. Subsets of regulatory CD25+CD8+ T cells with immunosuppressive functions can inhibit atherosclerosis. Importantly, local cytotoxic CD8+ T cell responses may trigger endothelial damage and plaque erosion in acute coronary syndromes. Understanding the complex role of CD8+ T cells in atherosclerosis may pave the way for defining novel treatment approaches in atherosclerosis. In this review article, we discuss these aspects, highlighting the emerging and critical role of CD8+ T cells in atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document