scholarly journals Interferon-gamma improves splicing efficiency of CYBB gene transcripts in an interferon-responsive variant of chronic granulomatous disease due to a splice site consensus region mutation

Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3548-3554 ◽  
Author(s):  
Antonio Condino-Neto ◽  
Peter E. Newburger

Abstract X-linked chronic granulomatous disease (CGD) derives from defects in the CYBB gene, which encodes the gp91-phox component of NADPH oxidase. We studied the molecular basis of the disease in a kindred with variant CGD, due to a single base substitution at the sixth position of CYBB first intron. The patients' phagocytes have been shown previously to greatly increase superoxide release in response to interferon-gamma (IFN-γ) in vitro and in vivo. We examined CYBB gene expression in an Epstein-Barr virus (EBV)-transformed B-cell line from 1 patient in this kindred. These cells showed markedly decreased levels of CYBB transcripts in total RNA (5% of normal) and nuclear RNA (1.4% of normal), despite equal CYBB transcription rates in the CGD and control cells. Incubation with IFN-γ produced a 3-fold increase in CYBBtotal messenger RNA (mRNA) levels in the patient's cells, and decreased nuclear transcripts to undetectable levels. Reverse transcriptase–polymerase chain reaction analysis of RNA splicing revealed a preponderance of unspliced CYBB transcripts in the patient's nuclear RNA. In vitro incubation with IFN-γ increased by 40% the ratio of spliced relative to unspliced CYBB mRNA in nuclei from the CGD B-cell line. Total RNA harvested from the same patient's monocytes, on and off therapy with IFN-γ, showed a similar improvement in splicing. We conclude that IFN-γ partially corrects a nuclear processing defect due to the intronic mutation in theCYBB gene in this kindred, most likely by augmentation of nuclear export of normal transcripts, and improvement in the fidelity of splicing at the first intron.

Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3548-3554
Author(s):  
Antonio Condino-Neto ◽  
Peter E. Newburger

X-linked chronic granulomatous disease (CGD) derives from defects in the CYBB gene, which encodes the gp91-phox component of NADPH oxidase. We studied the molecular basis of the disease in a kindred with variant CGD, due to a single base substitution at the sixth position of CYBB first intron. The patients' phagocytes have been shown previously to greatly increase superoxide release in response to interferon-gamma (IFN-γ) in vitro and in vivo. We examined CYBB gene expression in an Epstein-Barr virus (EBV)-transformed B-cell line from 1 patient in this kindred. These cells showed markedly decreased levels of CYBB transcripts in total RNA (5% of normal) and nuclear RNA (1.4% of normal), despite equal CYBB transcription rates in the CGD and control cells. Incubation with IFN-γ produced a 3-fold increase in CYBBtotal messenger RNA (mRNA) levels in the patient's cells, and decreased nuclear transcripts to undetectable levels. Reverse transcriptase–polymerase chain reaction analysis of RNA splicing revealed a preponderance of unspliced CYBB transcripts in the patient's nuclear RNA. In vitro incubation with IFN-γ increased by 40% the ratio of spliced relative to unspliced CYBB mRNA in nuclei from the CGD B-cell line. Total RNA harvested from the same patient's monocytes, on and off therapy with IFN-γ, showed a similar improvement in splicing. We conclude that IFN-γ partially corrects a nuclear processing defect due to the intronic mutation in theCYBB gene in this kindred, most likely by augmentation of nuclear export of normal transcripts, and improvement in the fidelity of splicing at the first intron.


Blood ◽  
1992 ◽  
Vol 80 (5) ◽  
pp. 1125-1129 ◽  
Author(s):  
A Thrasher ◽  
M Chetty ◽  
C Casimir ◽  
AW Segal

Failure of a superoxide generating system, the NADPH oxidase, present in neutrophils and other phagocytes gives rise to chronic granulomatous disease (CGD), a group of single-gene inherited disorders all characterized by an extreme susceptibility to pyogenic infection, with potentially fatal consequences. About 30% of CGD cases are caused by an autosomally inherited deficiency of a 47-Kd cytoplasmic component of the oxidase (p47-phox). Epstein-Barr virus (EBV) immortalized B- lymphocyte lines established from these CGD patients also express this NADPH oxidase defect and consequently are rendered incapable of generating superoxide on stimulation. We have used a p47-phox-deficient EBV-transformed B-cell line as a recipient for retroviral transfer of a functional p47-phox cDNA. The presence and activity of the retrovirally encoded p47-phox in the transduced cells is demonstrated and we show that this restores their capacity to generate superoxide.


Blood ◽  
1992 ◽  
Vol 80 (5) ◽  
pp. 1125-1129 ◽  
Author(s):  
A Thrasher ◽  
M Chetty ◽  
C Casimir ◽  
AW Segal

Abstract Failure of a superoxide generating system, the NADPH oxidase, present in neutrophils and other phagocytes gives rise to chronic granulomatous disease (CGD), a group of single-gene inherited disorders all characterized by an extreme susceptibility to pyogenic infection, with potentially fatal consequences. About 30% of CGD cases are caused by an autosomally inherited deficiency of a 47-Kd cytoplasmic component of the oxidase (p47-phox). Epstein-Barr virus (EBV) immortalized B- lymphocyte lines established from these CGD patients also express this NADPH oxidase defect and consequently are rendered incapable of generating superoxide on stimulation. We have used a p47-phox-deficient EBV-transformed B-cell line as a recipient for retroviral transfer of a functional p47-phox cDNA. The presence and activity of the retrovirally encoded p47-phox in the transduced cells is demonstrated and we show that this restores their capacity to generate superoxide.


2014 ◽  
Vol 43 (6) ◽  
pp. 585-594 ◽  
Author(s):  
Sun Hi Ko ◽  
Jung Woo Rhim ◽  
Kyung Sue Shin ◽  
Youn Soo Hahn ◽  
So Young Lee ◽  
...  

1996 ◽  
Vol 315 (2) ◽  
pp. 571-575 ◽  
Author(s):  
Colin D. PORTER ◽  
KURIBAYASHI KURIBAYASHI ◽  
Mohamed H. PARKAR ◽  
Dirk ROOS ◽  
Christine KINNON

NADPH oxidase cytochrome b558 consists of two subunits, gp91-phox and p22-phox, defects of which result in chronic granulomatous disease (CGD). The nature of the interaction between these subunits has yet to be determined. Absence of p22-phox in autosomal CGD patient-derived B-cell lines results in detectable levels of an incompletely glycosylated gp91-phox precursor. We have detected this same precursor species in four cell lines from patients with the X-linked form of the disease due to mutations in gp91-phox. Such mutations should delineate regions of gp91-phox important for its biosynthesis, including stable association with p22-phox. One mutation mapped to the putative FAD-binding domain, one mapped to a potential haem-binding domain, and two involved the region encoded by exon 3.


2014 ◽  
Vol 6 (4) ◽  
pp. 366 ◽  
Author(s):  
Sang-Mi Song ◽  
Mi-Ran Park ◽  
Do-Soo Kim ◽  
Jihyun Kim ◽  
Yae-Jean Kim ◽  
...  

Oncogene ◽  
1997 ◽  
Vol 14 (12) ◽  
pp. 1453-1461 ◽  
Author(s):  
Jocelyn Vedrenne ◽  
Eric Assier ◽  
Raffaele Pereno ◽  
Haniaa Bouzinba-Segard ◽  
Bruno Azzarone ◽  
...  

PEDIATRICS ◽  
1973 ◽  
Vol 51 (2) ◽  
pp. 230-233
Author(s):  
Andrew A. Raubitschek ◽  
Alan S. Levin ◽  
Daniel P. Stites ◽  
Edward B. Shaw ◽  
H. Hugh Fudenberg

An 8-year-old boy with chronic granulomatous disease (CGD) was admitted in moribund condition with aspergillus pneumonia. Because of the gravity of the situation, normal granulocyte infusions were used as adjuncts to the more conventional antimicrobial therapy. White blood cells, derived from a total of 58 units of whole blood obtained by leukophoresis of the father, were given in two separate doses. The first dose, totaling 2.8 x 1010 granulocytes, was coincident with significant improvement, and the second, totaling 3.0 x 1010 granulocytes, was coincident with the onset of clinical improvement and interim recovery. Transient improvement in in vitro granulocyte function was noted in cells taken from the patient's blood immediately after infusion. No adverse effects of the infusions were noted in either the patient or the donor. Although it is impossible to divorce the therapeutic effect of the granulocyte infusions from the more conventional therapy, we conclude that normal granulocyte infusions can be considered a valid adjunct in children with CGD who are suffering from a life-threatening infection.


Sign in / Sign up

Export Citation Format

Share Document