In vitro infection of megakaryocytes and their precursors by human cytomegalovirus

Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 487-493 ◽  
Author(s):  
Kirsten Crapnell ◽  
Esmail D. Zanjani ◽  
Aniruddho Chaudhuri ◽  
Joao L. Ascensao ◽  
Stephen St. Jeor ◽  
...  

Apart from congenital human cytomegalovirus (HCMV) infection, manifest HCMV disease occurs primarily in immunocompromised patients. In allogeneic bone marrow transplantation, HCMV is frequently associated with graft failure and cytopenias involving all hematopoietic lineages, but thrombocytopenia is the most commonly reported hematologic complication. The authors hypothesized that megakaryocytes (MK) may be a specific target for HCMV. Although the susceptibility of immature hematopoietic progenitors cells to HCMV has been established, a productive viral life cycle has only been linked to myelomonocytic maturation. The authors investigated whether HCMV can also infect MK and impair their function. They demonstrated that HCMV did not affect the thrombopoietin (TPO)-driven proliferation of CD34+ cells until MK maturation occurred. MK challenged with HCMV showed a 50% more rapid loss of viability than mock-infected cells. MK and their early precursors were clearly shown to be susceptible to HCMV in vitro, as evidenced by the presence of HCMV in magnetic column-purified CD42+ MK and 2-color fluorescent staining with antibodies directed against CD42a and HCMV pp65 antigen. These findings were confirmed by the infection of MK with a laboratory strain of HCMV containing the β-galactosidase (β-gal) gene. Using chromogenic β-gal substrates, HCMV was detected during MK differentiation of infected CD34+ cells and after infection of fully differentiated MK. Production of infectious virus was observed in cultures infected MK, suggesting that HCMV can complete its life cycle. These results demonstrate that MK are susceptible to HCMV infection and that direct infection of these cells in vivo may contribute to the thrombocytopenia observed in patients infected with HCMV.

Blood ◽  
1994 ◽  
Vol 84 (7) ◽  
pp. 2109-2114
Author(s):  
G Pichert ◽  
EP Alyea ◽  
RJ Soiffer ◽  
DC Roy ◽  
J Ritz

Previous studies have shown that tumor-specific bcr-abl mRNA can often be detected by polymerase chain reaction. (PCR) for months to years after allogeneic bone marrow transplantation (BMT) for chronic myelocytic leukemia (CML). Nevertheless, the presence of bcr-abl mRNA by itself does not invariably predict for clinical relapse post-BMT. This has led to the hypothesis that bcr-abl mRNA might be expressed in cells that have lost either proliferative or myeloid differentiation potential. To directly characterize the cells detected by PCR in patients with CML after allogeneic BMT, we first identified five individuals in whom PCR-positive cells could be detected at multiple times post-BMT. Bone marrow samples from these individuals were cultured in vitro and single erythroid, granulocytic, and macrophage colonies, each containing 50 to 100 cells, were examined for the presence of bcr-abl mRNA by PCR. PCR-positive myeloid colonies could be detected in four of five individuals in marrow samples obtained 5 to 56 months post-BMT. Overall, 7 of 135 progenitor cell colonies (5.2%) were found to be PCR-positive. The expression of bcr-abl mRNA appeared to be equally distributed among committed erythroid, macrophage, and granulocyte progenitors. These patients have now been followed-up for an additional 20 to 33 months from the time of progenitor cell PCR analysis but only one of these individuals has been found to have cytogenetic evidence of recurrent Ph+ cells. These results show that long-term persistence of PCR-detectable bcr-abl mRNA after allogeneic BMT can be caused by the persistence of CML-derived clonogenic myeloid precursors that have survived the BMT preparative regimen. These cells continue to have both proliferative and myeloid differentiation capacity in vitro. Nevertheless, these PCR-positive cells do not appear to either expand or differentiate in vivo for prolonged periods, suggesting the presence of mechanisms for suppression of residual clonogenic leukemia cells in vivo.


2021 ◽  
pp. 135965352110640
Author(s):  
D Andouard ◽  
R Gueye ◽  
S Hantz ◽  
C Fagnère ◽  
B Liagre ◽  
...  

Background Human cytomegalovirus (HCMV) is involved in complications on immunocompromised patients. Current therapeutics are associated with several drawbacks, such as nephrotoxicity. Purpose: As HCMV infection affects inflammation pathways, especially prostaglandin E2 (PGE2) production via cyclooxygenase 2 enzyme (COX-2), we designed 2'-hydroxychalcone compounds to inhibit human cytomegalovirus. Study design We first selected the most efficient new synthetic chalcones for their effect against COX-2-catalyzed PGE2. Study sample Among the selected compounds, we assessed the antiviral efficacy against different HCMV strains, such as the laboratory strain AD169 and clinical strains (naïve or multi-resistant to conventional drugs) and toxicity on human cells. Results The most efficient and less toxic compound (chalcone 7) was tested against HCMV in combination with other antiviral molecules: artesunate (ART), baicalein (BAI), maribavir (MBV), ganciclovir (GCV), and quercetin (QUER) using Compusyn software. Association of chalcone 7 with MBV and BAI is synergistic, antagonistic with QUER, and additive with GCV and ART. Conclusion These results provide a promising search path for potential bitherapies against HCMV.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1907-1907 ◽  
Author(s):  
Jeffery J Auletta ◽  
Saada Eid ◽  
Matthew Keller ◽  
Leland Metheny ◽  
Rocio Guardia-Wolff ◽  
...  

Abstract Abstract 1907 Defining in vivo effects and biodistribution of human bone marrow-derived mesenchymal stem cell (hMSCs) following allogeneic bone marrow transplantation (alloBMT) could impact the clinical utility of MSC therapy for the prevention and treatment of graft-versus-host disease (GvHD). Using an established model of murine alloBMT, we defined hMSC effects on GvHD and graft-versus-leukemia (GvL) activity. We first studied whether hMSC could modulate in vitro murine T-cell (TC) alloreactivity in mixed leukocyte cultures (MLCs). Specifically, hMSCs added to MLCs significantly reduced TC proliferation in a concentration-dependent manner distinct from human fibroblasts. In contrast to MLC cultures alone, MLCs containing hMSCs had significant reduction in TNFα, IFNγ, and IL-10 levels and higher levels of PGE2 and TGFβ1. Modulation in the inflammatory milieu was associated with changes in TC phenotypes, including more naïve and less activated TC surface marker expression (CD62L+CD69−) and the induction of CD4+CD25+FoxP3+ T-regulatory cells. To determine whether hMSCs could modulate in vivo mTC alloreactivity, irradiated recipient B6D2F1 (H-2bxd) mice were transplanted with allogeneic C57BL/6 (H-2b) BM and purified splenic TCs (B6→B6D2F1) and then were tail-vein injected with hMSC infusions (1 million per injection) on days one and four post-transplant. Syngeneic transplant recipients (B6D2F1→B6D2F1) were used as controls. hMSC-treated alloBMT mice had significantly prolonged survival and improved clinical GvHD scores, reduced splenic TC expansion and TNFα and IFNγ-producing TCs, and lower circulating TNFα and IFNγ levels versus untreated alloBMT mice. Bioluminescence imaging showed redistribution of labeled hMSCs from the lungs to abdominal organs within 72 hours following infusion. Importantly, GvHD target tissues (small and large bowel and liver) harvested from hMSC-treated alloBMT mice had significantly lower GvHD pathology scores than untreated alloBMT mice. We next determined the effects of hMSCs on GvL activity using the murine mastocytoma cell line, P815 (H-2d). TCs co-cultured with hMSCs maintained potent in vitro cytotoxic T-lymphocyte (CTL) activity comparable to untreated control CTLs. After challenge with P815 tumor cells, hMSCs-treated alloBMT mice had less severe GvHD, eradication of tumor burden, and improved leukemia-free survival compared to alloBMT control mice. Lastly, indomethacin (IM) added to MLC-hMSC co-cultures significantly reversed attenuation in both murine TC alloreactivity and surface activation expression. In addition, IM administered to hMSC-treated alloBMT mice reversed hMSC-associated survival advantage, suggesting that PGE2 in part mediates hMSC immunomodulatory effects. Together, our results show that hMSC infusions effectively attenuate GvHD and maintain GvL potency in alloBMT mice and reveal potential biomarkers and mechanisms of action underlying hMSC effects. Disclosures: Solchaga: Bimemetic Therapeutics: Employment. Cooke:Amgen: Provides experimental drug and central pharmacy support for 2 trials for which I am Co-PI.


Blood ◽  
2021 ◽  
Author(s):  
Wei Jia ◽  
Jonathan C. Poe ◽  
Hsuan Su ◽  
Sarah Anand ◽  
Glenn K. Matsushima ◽  
...  

Chronic graft versus host disease (cGVHD) patients have increased B cell-activating factor (BAFF) levels, but whether BAFF promotes disease after allogeneic bone marrow transplantation (allo-BMT) remains unknown. In a major MHC-mismatched model with cGVHD-like manifestations we first examined B-lymphopenic mMT allo-BMT recipients and found that increased BAFF levels in cGVHD mice were not merely a reflection of B cell number. Mice that later developed cGVHD, had significantly increased numbers of recipient fibroblastic reticular cells (FRCs) with higher BAFF transcript levels. Increased BAFF production by donor cells also likely contributed to cGVHD since BAFF transcript in CD4+ T cells from diseased mice and patients was increased. Chronic GVHD manifestations in mice associated with high BAFF/B cell ratios and persistence of B Cell Receptor (BCR)-activated B cells in peripheral blood and lesional tissue. By employing BAFF transgenic (Tg) mice donor cells, we addressed whether high BAFF contributed to BCR activation in cGVHD. BAFF increased NOTCH2 expression on B cells, augmenting BCR-responsiveness to surrogate antigen and NOTCH ligand. BAFF-Tg B cells had significantly increased protein levels of the proximal BCR signaling molecule SYK, and high SYK protein was maintained by BAFF after in vitro BCR-activation or when alloantigen was present in vivo. Using T-cell depleted (BM only) BAFF-Tg donors, we found that BAFF promoted cGVHD manifestations, circulating GL7+ B cells and alloantibody production. We demonstrate that pathological production of BAFF promotes an altered B-cell compartment and augments BCR-responsiveness. Our findings compel studies of therapeutic targeting of BAFF and BCR pathways in cGVHD patients.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3482-3482
Author(s):  
Minghui Li ◽  
Kai Sun ◽  
Mark Hubbard ◽  
Doug Redelman ◽  
Angela Panoskaltsis-Mortari ◽  
...  

Abstract IL-17-producing CD4 T cells (Th17) are a recently identified T helper subset that plays a role in mediating host defense to extracellular bacteria infections and is involved in the pathogenesis of many autoimmune diseases. In vitro induction of IL-17 in murine CD4+ T cells has been shown to be dependent on the presence of the proinflammatory cytokines TGF-β and IL-6 whereas IFNγ can suppress the development of Th17 cells. In the current study, we examined the roles of TNFα and IFNγ on IL-17 production by purified T cells in vitro and in vivo after allogeneic bone marrow transplantation (BMT). We present findings that expression of TNFα by the T cell itself is necessary for optimal development of Th17 under in vitro polarizing conditions. A novel role for T cell-derived TNFα in Th17 induction was observed when in vitro polarization of Tnf−/−CD4+ T cells resulted in marked reductions in IL-17+CD4+ T cells compared to Tnf+/+CD4+ T cells. In marked contrast, T cell-derived IFNγ markedly inhibited Th17 development as more IL-17+CD4+ T cells were found in Ifnγ−/−CD4+ T cells than in Ifnγ+/+CD4+ T cells, and of particular interest was the dramatic increase in IL-17+CD8+ cells from Ifnγ−/− mice. To determine if T cell-derived TNFα or IFNγ can regulate Th17 development in vivo we examined the differentiation of alloreactive donor T cells following allogeneic BMT. We have found that donor-derived Th17 cells can be found in lymphoid tissues and GVHD-affected organs after allogeneic BMT. However, transfer of Tnf−/− CD4+ T cells after allogeneic BMT resulted in marked reductions in Th17 cells in the spleen (18×103 vs 7×103, P<0.05). In agreement with the in vitro data and in contrast to what was observed with transfer of Tnf−/− CD4+ T cells, transfer of donor Ifnγ−/− T cells resulted in marked increases in not only IL-17+CD4+ but also IL-17+CD8+ T cells infiltrating the liver (7×103 vs 14×103, P<0.05; 4×104 vs 12.5×104, P<0.05). These results suggest that the donor T cell-derived TNFα and IFNγ opposingly regulate IL-17 induction of both CD4+ and CD8+ T cells in vitro and after allogeneic BMT which correlates with GVHD pathology.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3682-3690 ◽  
Author(s):  
Kerstin Staak ◽  
Susanna Prösch ◽  
Joachim Stein ◽  
Christina Priemer ◽  
Ralf Ewert ◽  
...  

Abstract OKT3 monoclonal antibody (MoAb) therapy is well established in the prevention and therapy of acute rejection in transplant patients. Unfortunately, this therapy is associated with several short-term (cytokine release syndrome) and long-term (infections, EBV-related lymphoma) side effects. Recently, we were able to demonstrate an association between the TNFα release following the first OKT3 MoAb infusions and the appearance of human cytomegalovirus (HCMV) reactivation several days later. In order to prevent this TNFα associated HCMV reactivation patients were additionally treated with pentoxifylline (PTX), a methylxanthine derivative that has been shown to suppress TNFα induction. Although the TNFα peak plasma level following OKT3 MoAb treatment was markedly reduced, the incidence of HCMV reactivation and HCMV disease was not influenced. In transient transfection experiments using HCMV immediate early enhancer/promoter CAT reporter gene constructs PTX enhanced the promoter activity independently from TNFα in premonocytic cells. Furthermore, PTX acted synergistically with TNFα. In virus-infected human embryonal lung fibroblasts HCMV replication was triggered in the presence of both PTX and TNFα, while either substance alone had only marginal effects. The stimulatory effect of PTX on the immediate early (IE) enhancer/promoter was mediated via CREB/ATF, a eukaryotic transcription factor that binds to the 19 bp sequence motif in the enhancer region, while TNFα stimulation was mediated by activation of the transcription factor NF-kB and its binding to the 18 bp sequence motif in the enhancer. These data suggest a potential side effect of cAMP-elevating drugs such as PTX.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 25-25
Author(s):  
Feng-qi Liu ◽  
Fei-er Feng ◽  
Gao-chao Zhang ◽  
Yan Su ◽  
Xue-yan Sun ◽  
...  

Introduction Virus-induced thrombocytopenia is a severe complication in immunocompromised hosts. Among patients following allogeneic hematopoietic stem cell transplantation (allo-HSCT), human cytomegalovirus (HCMV) infection contributes to a variety of end-organ diseases and hematological complications, leading to increased mortality. Even with antiviral treatment, HCMV remains a potentially lethal infection due to the lack of understanding of the underlying mechanisms of host-virus interactions. The key to solving this problem is to identify the factors that predispose patients to HCMV infection and carry out targeted therapy. Here, we investigated the megakaryo/thrombopoiesis process, including the thrombopoietin (TPO)/c-Mpl pathway, after HCMV infection in vivo and in vitro, screened for susceptible subsets of megakaryocytes (MKs) and explored novel therapeutic targets for HCMV infection. Methods To test whether thrombocytopenia induced by HCMV results from an impaired megakaryo/thrombopoiesis process, we studied the impact of HCMV in an in vivo model of HCMV DNAemia patients following allo-HSCT and an in vitro model of bone marrow CD34+-derived MKs infected with serum from HCMV DNAemia patients. Forty patients who had received allo-HSCT were enrolled in this study, among whom 18 recipients had HCMV DNAemia and 22 were HCMV negative, and bone marrow-derived mononuclear cells (MNCs) from patients were tested for CD41, vWF, pp65, c-Mpl, PDGFR, αvβ3 and TLR2 using flow cytometry (FCM). Transmission electron microscopy (TEM) was used to detect HCMV capsids inside MKs. Cell apoptosis was measured by Annexin V. MK ploidy was determined by FCM for propidium iodide (PI) staining. Finally, inhibitors of PDGFR (IMC-3G3 and Gleevec), αvβ3 and TLR2 were cocultured with MKs. Results Our data showed that pp65+ cells accounted for 40.59±6.12% of total CD41+vWF+ MKs from HCMV DNAemia patients, and there was a significant increase in the expression of αvβ3, PDGFR and TLR2 in pp65+ MKs compared with that in control patients. Furthermore, the percentage of PDGFR+αvβ3+ MKs emerged as an independent factor associated with HCMV infection in multivariate analysis (p = 0.008). MKs in HCMV-infected patients showed increased apoptosis and necrosis and different patterns of MK ploidy distribution compared with those in HCMV-negative patients, with a decreased proportion from 16N to 64N and a peak at 8N. Meanwhile, the expression of TPO receptor c-Mpl was lower in pp65+ MKs from HCMV DNAemia patients (0.77±0.38% in pp65+ MKs from HCMV DNAemia patients, 1.75±0.40% in pp65- MKs from HCMV DNAemia patients, 1.97±0.67% in MKs from HCMV-negative patients, and 2.06±0.29% in MKs from healthy controls, p&lt;0.01) while the TPO level in serum was increased compared with that in controls. Next, we established an in vitro HCMV infection model of CD34+-derived MKs with serum from HCMV DNAemia patients, and the laboratory HCMV strain Towne was used as a positive control. After 9 days of coculturing, the viral capsids of HCMV were observed in the nuclei of MKs (Figure 1A), and HCMV infection increased the apoptosis of MKs and shifted them to low ploidy, with a significant decrease in platelet release. As with the in vivo results, c-Mpl was downregulated in HCMV-infected MKs. The expression levels of PDGFR, TLR2 and αvβ3 on MKs were increased in coculture with HCMV DNAemia serum, and pp65-positive MKs were decreased compared with the control after treatment with inhibitors of PDGFR and αvβ3 (Figure 1B). However, neither Gleevec nor anti-TLR2 altered the HCMV infection rate. Conclusions Our study showed that HCMV could impair megakaryopoiesis throughout maturation, apoptosis, and platelet generation via the TPO/c-Mpl pathway both in vivo and in vitro. MKs with PDGFR+ and αvβ3+ phenotypes are susceptible to HCMV infection and we proposed PDGFR and αvβ3 inhibitors as potential therapeutic alternatives for allo-HSCT patients with HCMV infection. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3682-3690 ◽  
Author(s):  
Kerstin Staak ◽  
Susanna Prösch ◽  
Joachim Stein ◽  
Christina Priemer ◽  
Ralf Ewert ◽  
...  

OKT3 monoclonal antibody (MoAb) therapy is well established in the prevention and therapy of acute rejection in transplant patients. Unfortunately, this therapy is associated with several short-term (cytokine release syndrome) and long-term (infections, EBV-related lymphoma) side effects. Recently, we were able to demonstrate an association between the TNFα release following the first OKT3 MoAb infusions and the appearance of human cytomegalovirus (HCMV) reactivation several days later. In order to prevent this TNFα associated HCMV reactivation patients were additionally treated with pentoxifylline (PTX), a methylxanthine derivative that has been shown to suppress TNFα induction. Although the TNFα peak plasma level following OKT3 MoAb treatment was markedly reduced, the incidence of HCMV reactivation and HCMV disease was not influenced. In transient transfection experiments using HCMV immediate early enhancer/promoter CAT reporter gene constructs PTX enhanced the promoter activity independently from TNFα in premonocytic cells. Furthermore, PTX acted synergistically with TNFα. In virus-infected human embryonal lung fibroblasts HCMV replication was triggered in the presence of both PTX and TNFα, while either substance alone had only marginal effects. The stimulatory effect of PTX on the immediate early (IE) enhancer/promoter was mediated via CREB/ATF, a eukaryotic transcription factor that binds to the 19 bp sequence motif in the enhancer region, while TNFα stimulation was mediated by activation of the transcription factor NF-kB and its binding to the 18 bp sequence motif in the enhancer. These data suggest a potential side effect of cAMP-elevating drugs such as PTX.


2016 ◽  
Vol 60 (8) ◽  
pp. 4961-4971 ◽  
Author(s):  
Hetalkumar D. Patel ◽  
Pavel Nikitin ◽  
Thomas Gesner ◽  
James J. Lin ◽  
David T. Barkan ◽  
...  

ABSTRACTHuman cytomegalovirus (HCMV) infection is usually benign in healthy individuals but can cause life-threatening disease in those with compromised immune systems. Approved drugs available to treat HCMV disease, including ganciclovir, cidofovir, and foscarnet, have significant toxicities that limit their use in certain patient populations. LJP538 and LJP539 are human monoclonal antibodies that are being evaluated as immunoglobulin therapeutics. The antibodies target glycoproteins gB and the gH/gL/UL128/UL130/UL131a pentameric complex, respectively. Here we present anin vitrocharacterization of these antibodies. We show that LJP538 and LJP539 are more potent than a marketed immunoglobulin at inhibiting HCMV infection of various cell lines relevant to pathogenesis. We find that LJP538 and LJP539 are active against a panel of clinical isolatesin vitroand demonstrate minor-to-moderate synergy in combination. Passage of HCMV in the presence of LJP538 or LJP539 alone resulted in resistance-associated mutations that mapped to the target genes. However, no loss of susceptibility to the combination of antibodies was observed for >400 days in culture. Finally, the binding regions of LJP538 and LJP539 are conserved among clinical isolates. Taken together, these data support the use of LJP538 and LJP539 in combination for clinical trials in HCMV patients.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 723-723
Author(s):  
Martino Introna ◽  
Marta Franceschetti ◽  
Alice Ciocca ◽  
Gianmaria Borleri ◽  
Elena Conti ◽  
...  

Abstract Cytokine induced killer cells (CIK) are CD3+/CD56+ T/NK cells with cytotoxic potential against leukemic and other tumor cells but not normal bone marrow in vitro and in vivo. They are expanded in vitro with rhIL-2 after stimulation of peripheral blood mononuclear cells with OKT3 and IFN-γ. We have shown in a recent phase I study that 107/kg allogeneic CIK cells can be safely given to patients relapsing after allogeneic bone marrow transplantation and show evidence of anti-leukemic activity in vivo with very little GVHD. Cord blood (CB) transplantation is progressively becoming an extensively used treatment for patients with malignant disorders. One major limitation of this procedure is the lack of donor derived cells to perform donor lymphocyte infusions in case of relapse. In order to be able therefore to extend the use of CIK cells to the CB transplantation setting, we have standardised a 21 days expansion protocol to produce CIK cells starting from very small amounts of nucleated cells isolated from cord blood. Using this protocol, 15x106 mononuclear cells (MNC) from CB containing a mean 0.3x106 CD3+/CD56+ yielded on average 805 x 106 MNC (50 fold expansion) containing 630 x106 CD3+/CD56+ cells (corresponding to a fold expansion of 1860 for CIK). In order to transfer the method to a clinical setting, we explored the possibility of expanding the residual cells recovered from the empty bags after CB transplantion. Three used CB bags were returned to the laboratory after transplantation and repeatedly washed. An average of 22 x106 nucleated cells could be recovered, yielding a mean 473 x106 CD3/CD56+ cells at the end of the culture period (1485 fold expansion of CIK cells). CIK cells generated from CB showed strong cytotoxic activity against a variety of tumor target cell lines including B and T lymphomas and myeloid leukemias (42–72% killing at a 30:1 E:T ratio). More importantly, they were cytotoxic against AML blasts isolated from 2 patients (41% lysis). During expansion CB derived CIK cells upregulated the NKG2D marker from a mean fluorescence intensity of 49 to 209. Furthermore they expressed perforin and granzyme molecules in &gt;90% of cells. These observations open up the possibility of a future clinical application of this protocol, performed in GMP conditions. Patients relapsing following cord blood transplantation may be treated with CIK cells expanded from the same cord blood unit, where donors would not be anymore available for cell mediated immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document