A novel syndrome of variant leukocyte adhesion deficiency involving defects in adhesion mediated by β1 and β2 integrins

Blood ◽  
2001 ◽  
Vol 97 (3) ◽  
pp. 767-776 ◽  
Author(s):  
Estelle S. Harris ◽  
Ann O. Shigeoka ◽  
Wenhua Li ◽  
Roberta H. Adams ◽  
Stephen M. Prescott ◽  
...  

Abstract Leukocyte adhesion deficiency type I (LAD-1) is a disorder associated with severe and recurrent bacterial infections, impaired extravascular targeting and accumulation of myeloid leukocytes, altered wound healing, and significant morbidity that is caused by absent or greatly diminished surface expression of integrins of the β2 class. We report clinical features and analysis of functions of cells from a patient with a myelodysplastic syndrome and infectious complications similar to those in the severe form of LAD-1, but whose circulating neutrophils displayed normal levels of β2 integrins. Analysis of adhesion of these cells to immobilized ligands and to endothelial cells and assays of cell-cell aggregation and chemotaxis demonstrated a profound defect in adhesion mediated by β2 integrins indicative of a variant form of LAD-1. A novel cell line established from Epstein-Barr virus–transformed lymphoblasts from the subject demonstrated deficient β2 integrin–dependent adhesive function similar to that of the primary leukocytes. In addition, these cells had markedly impaired β1 integrin–dependent adhesion. Sequence analysis and electrophoretic mobility of β1 and β2 proteins from the cell line demonstrated that the defects were not a result of structural abnormalities in the integrin subunit chains themselves and suggest that the adhesive phenotype of these cells is due to one or more abnormalities of inside-out signaling mechanisms that regulate the activity of integrins of these classes. These features define a unique LAD-1 variant syndrome that may reveal important insights that are generally relevant to inside-out signaling of integrins, a molecular process that is as yet incompletely understood.

2021 ◽  
Vol 9 ◽  
Author(s):  
Amal M. Yahya ◽  
Asia A. AlMulla ◽  
Haydar J. AlRufaye ◽  
Ahmed Al Dhaheri ◽  
Abdulghani S. Elomami ◽  
...  

Fermitin family homolog 3 (FERMT3), alternatively kindlin-3 (KIND3), is an integrin binding protein (of 667 residues) encoded by the FERMT3 gene. The molecule is essential for activating integrin αIIbβ3 (the fibrinogen receptor) on platelets and for the integrin-mediated hematopoietic cell (including platelets, T lymphocytes, B lymphocytes, and granulocytes) adhesion. Its defects are associated with impaired primary hemostasis, described as “Glanzmann's thrombasthenia (MIM#273800)-like bleeding problem.” The defects are also associated with infections, designated as “LAD1 (leukocyte adhesion deficiency, type I; MIM#116920)-like immune deficiency.” The entity that joins the impaired primary hemostasis with the leukocyte malfunction has been termed “leukocyte adhesion deficiency, type III” (LAD3, autosomal recessive, MIM#612840), representing a defective activation of the integrins β1, β2, and β3 on leukocytes and platelets. Here, we report a male toddler with novel compound heterozygous variants, NM_178443.2(FERMT3):c.1800G>A, p.Trp600* (a non-sense variant) and NM_178443.2(FERMT3):c.2001del p.*668Glufs*106 (a non-stop variant). His umbilical cord separated at about 3 weeks of age. A skin rash (mainly petechiae and purpura) and recurrent episodes of severe epistaxis required blood transfusions in early infancy. His hemostatic work-up was remarkable for a normal platelet count, but abnormal platelet function screen with markedly prolonged collagen-epinephrine and collagen-ADP closure times. The impaired platelet function was associated with reduced platelet aggregation with all agonists. The expression of platelet receptors was normal. Other remarkable findings were persistent lymphocytosis and granulocytosis, representing defects in diapedesis due to the integrin dysfunction. The natural history of his condition, structure and sequence analysis of the variations, and comparison with other LAD3 cases reported in the literature are presented.


2008 ◽  
Vol 79 (4) ◽  
pp. 764-768 ◽  
Author(s):  
Reem Dababneh ◽  
Adel M. Al-wahadneh ◽  
Shamekh Hamadneh ◽  
Antwan Khouri ◽  
Nabil F. Bissada

2007 ◽  
Vol 204 (7) ◽  
pp. 1571-1582 ◽  
Author(s):  
Ronit Pasvolsky ◽  
Sara W. Feigelson ◽  
Sara Sebnem Kilic ◽  
Amos J. Simon ◽  
Guy Tal-Lapidot ◽  
...  

Leukocyte and platelet integrins rapidly alter their affinity and adhesiveness in response to various activation (inside-out) signals. A rare leukocyte adhesion deficiency (LAD), LAD-III, is associated with severe defects in leukocyte and platelet integrin activation. We report two new LAD cases in which lymphocytes, neutrophils, and platelets share severe defects in β1, β2, and β3 integrin activation. Patients were both homozygous for a splice junction mutation in their CalDAG-GEFI gene, which is a key Rap-1/2 guanine exchange factor (GEF). Both mRNA and protein levels of the GEF were diminished in LAD lymphocytes, neutrophils, and platelets. Consequently, LAD-III platelets failed to aggregate because of an impaired αIIbβ3 activation by key agonists. β2 integrins on LAD-III neutrophils were unable to mediate leukocyte arrest on TNFα-stimulated endothelium, despite normal selectin-mediated rolling. In situ subsecond activation of neutrophil β2 integrin adhesiveness by surface-bound chemoattractants and of primary T lymphocyte LFA-1 by the CXCL12 chemokine was abolished. Chemokine inside-out signals also failed to stimulate lymphocyte LFA-1 extension and high affinity epitopes. Chemokine-triggered VLA-4 adhesiveness in T lymphocytes was partially defective as well. These studies identify CalDAG-GEFI as a critical regulator of inside-out integrin activation in human T lymphocytes, neutrophils, and platelets.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 459-459
Author(s):  
Mehreen Hai ◽  
Thomas R. Bauer ◽  
Robert A. Sokolic ◽  
Yuchen Gu ◽  
Laura M. Tuschong ◽  
...  

Abstract Children with the severe deficiency phenotype of leukocyte adhesion deficiency (LAD-1) suffer recurrent, life-threatening bacterial infections due to defective adherence and migration of their leukocytes. LAD-1 is caused by heterogeneous molecular defects in the leukocyte integrin CD18 molecule. Dogs with the canine form of leukocyte adhesion deficiency (CLAD), like children with severe deficiency LAD-1, experience severe bacterial infections, and typically die within the first few months of life from infection. CLAD represents a disease-specific, large animal model for evaluating new therapeutic approaches for the human disease LAD. In these studies, we tested a retroviral-vector mediated gene therapy approach in CLAD. Autologous CLAD CD34+ bone marrow hematopoietic stem cells were pre-stimulated overnight with growth factors cIL-6, cSCF, hFlt3-L, and hTPO, then incubated with retroviral vector PG13/MSCV-cCD18 over 48 hours on recombinant fibronectin. Transduction of the CLAD CD34+ cells was measured by flow cytometry for CD18+ cells and ranged from 11% to 21%. The transduced cells were re-infused (0.26 − 1.49 x 106 CD18+ cells / kg) into the dogs following the administration of two different non-myeloablative conditioning regimens: 5 CLAD dogs received autologous, gene-corrected CD34+ cells following 200 cGy total body irradiation (TBI) and 2 CLAD dogs received autologous, gene-corrected CD34+ cells following 10 mg/kg busulfan. Peripheral blood samples were analyzed by flow cytometry for CD18 expression following the re-infusion of the transduced CD34+ cells. The frequency of CD18+ gene-corrected leukocytes in the peripheral blood ranged from 0.04% to a high of 4.44% at 6 – 11 months post-gene transfer. Two of the five dogs in the first group and one of the two dogs in the second group that received CD18+ gene-corrected cells are alive and well on no prophylactic treatment at 9 – 14 months of age. Of note, the CLAD dog receiving busulfan conditioning has the highest level of CD18+ gene-corrected cells (4.44% at 6 months post-infusion), with the levels increasing at monthly intervals since the second month following re-infusion. These results contrast markedly with those seen in untreated CLAD dogs that die or are euthanized within the first few months of life due to intractable infection. These studies indicate that a clinically applicable non-myeloablative regimen of either 200 cGy TBI or 10 mg/kg busulfan facilitates the engraftment of sufficient autologous, CD18-gene corrected cells to correct the lethal disease phenotype in CLAD. No evidence of monoclonality has been detected by LAM-PCR in any of the dogs with therapeutic levels of gene-corrected cells. In future studies we will optimize the transduction protocol in order to increase the number of CD34+ gene-corrected cells for infusion, as well as closely monitor the gene-corrected animals for any evidence of insertional mutagenesis or other complications related to the therapy. Together, these findings support the use of either of two clinically applicable, non-myeloablative conditioning regimens prior to the infusion of autologous, CD18 gene-corrected cells in gene therapy clinical trials for LAD.


Blood ◽  
2015 ◽  
Vol 126 (25) ◽  
pp. 2704-2712 ◽  
Author(s):  
Sarah Klapproth ◽  
Markus Sperandio ◽  
Elaine M. Pinheiro ◽  
Monika Prünster ◽  
Oliver Soehnlein ◽  
...  

Key Points RIAM is an essential regulator of β2 integrins on leukocytes. Leukocyte α4β1 integrin is activated in a RIAM-independent manner.


2007 ◽  
Vol 0 (0) ◽  
pp. 070725210739013-???
Author(s):  
Yi-Chan Tsai ◽  
Wen-I Lee ◽  
Jing-Long Huang ◽  
Iou-Jih Hung ◽  
Tang-Her Jaing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document