High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors

Blood ◽  
2001 ◽  
Vol 98 (9) ◽  
pp. 2664-2672 ◽  
Author(s):  
Francois Moreau-Gaudry ◽  
Ping Xia ◽  
Gang Jiang ◽  
Natalya P. Perelman ◽  
Gerhard Bauer ◽  
...  

AbstractUse of oncoretroviral vectors in gene therapy for hemoglobinopathies has been impeded by low titer vectors, genetic instability, and poor expression. Fifteen self- inactivating (SIN) lentiviral vectors using 4 erythroid promoters in combination with 4 erythroid enhancers with or without the woodchuck hepatitis virus postregulatory element (WPRE) were generated using the enhanced green fluorescent protein as a reporter gene. Vectors with high erythroid-specific expression in cell lines were tested in primary human CD34+ cells and in vivo in the murine bone marrow (BM) transplantation model. Vectors containing the ankyrin-1 promoter showed high-level expression and stable proviral transmission. Two vectors containing the ankyrin-1 promoter and 2 erythroid enhancers (HS-40 plus GATA-1 or HS-40 plus 5-aminolevulinate synthase intron 8 [I8] enhancers) and WPRE expressed at levels higher than the HS2/β-promoter vector in bulk unilineage erythroid cultures and individual erythroid blast-forming units derived from human BM CD34+ cells. Sca1+/lineage− Ly5.1 mouse hematopoietic cells, transduced with these 2 ankyrin-1 promoter vectors, were injected into lethally irradiated Ly5.2 recipients. Eleven weeks after transplantation, high-level expression was seen from both vectors in blood (63%-89% of red blood cells) and erythroid cells in BM (70%-86% engraftment), compared with negligible expression in myeloid and lymphoid lineages in blood, BM, spleen, and thymus (0%-4%). The I8/HS-40–containing vector encoding a hybrid human β/γ-globin gene led to 43% to 113% human γ-globin expression/copy of the mouse α-globin gene. Thus, modular use of erythroid-specific enhancers/promoters and WPRE in SIN-lentiviral vectors led to identification of high-titer, stably transmitted vectors with high-level erythroid-specific expression for gene therapy of red cell diseases.

Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3414-3422 ◽  
Author(s):  
Harry Raftopoulos ◽  
Maureen Ward ◽  
Philippe Leboulch ◽  
Arthur Bank

Abstract Somatic gene therapy of hemoglobinopathies depends initially on the demonstration of safe, efficient gene transfer and long-term, high-level expression of the transferred human β-globin gene in animal models. We have used a β-globin gene/β-locus control region retroviral vector containing several modifications to optimize gene transfer and expression in a mouse transplant model. In this report we show that transplantation of β-globin–transduced hematopoietic cells into lethally irradiated mice leads to the continued presence of the gene up to 8 months posttransplantation. The transferred human β-globin gene is detected in 3 of 5 mice surviving long term (>4 months) transplanted with bone marrow cells transduced with high-titer virus. Southern blotting confirms the presence of the unrearranged 5.1-kb human β-globin gene-containing provirus in 2 of these mice. In addition, long-term expression of the transferred gene is seen in 2 mice at levels of 5% and 20% that of endogenous murine β-globin at 6 and 8 months posttransplantation. We further document stem cell transduction by the successful transfer and high-level expression of the human β-globin gene from mice transduced 9 months earlier into irradiated secondary recipient mice. These results demonstrate high-level, long-term somatic human β-globin gene transfer into the hematopoietic stem cells of an animal for the first time, and suggest the potential feasibility of a retroviral gene therapy approach to sickle cell disease and the β thalassemias.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3543-3543
Author(s):  
Christopher Doering ◽  
Gabriela Denning ◽  
Keith Kerstann ◽  
Bagirath Gangadharan ◽  
Robert Keefe ◽  
...  

Abstract Several hurdles limit the successful gene therapy treatment of hemophilia A. For example, human coagulation factor VIII (fVIII) is inefficiently biosynthesized and has proven difficult to express using recombinant viral gene transfer, target cells have been inefficiently transduced, and fVIII expression can result in inhibitory antibody formation to the transgene product. Recently, we showed that B-domain-deleted porcine fVIII (BDDpfVIII) is expressed at levels 100-fold higher than BDD human fVIII (BDDhfVIII) in both in vitro and in vivo systems. Ex vivo modification of murine bone marrow cells with recombinant BDDpfVIII-encoding retrovirus followed by transplantation into non-myeloablative hemophilia A murine recipients resulted in long-term fVIII expression at levels considered curative, and the transplanted mice were immunogenically tolerant to the BDDpfVIII expressed from the genetically-modified hematopoietic cells. We now have identified the residues within BDDpfVIII responsible for the high-level expression and incorporated them into the cDNA encoding BDDhfVIII, thus generating a high-expression hybrid human/porcine (HP) construct composed of 90% human and only 10% porcine sequence. High titer recombinant oncoretroviral and lentiviral vectors were generated with the chimeric HP-fVIII sequence and used to transduce human cell lines, murine sca-1+ cells, and primary human hematopoietic cells. The lentiviral vectors efficiently transduced the human cell lines HEK-293, Hela, K562, EU-1, jurkat and U937, the former 4 being hematopoietic cell-derived. In HEK-293 cells, a linear increase in fVIII expression was observed with increasing MOI, and at 7-days after transduction the expression was 28 units/106 cells/24 hr, compare to only 4 units/106 cells/24 hr for BDDhfVIII (MOI = 3). In the hematopoietic cells lines, therapeutically significant, but approximately 10-fold lower expression was observed. Transplantation of oncoretroviral or lentiviral transduced murine hematopoietic stem and progenitor cells into lethally conditioned hemophilia A recipient mice resulted in long-term fVIII expression at therapeutic levels (>10% normal human levels) despite having only 5% or less genetically-modified blood mononuclear cells. No fVIII activity was observed in hemophilia A mice transplanted under identical conditions using recombinant virus encoding BDDhfVIII. Human CD34+ cells were isolated from fresh bone marrow aspirates, cultured overnight, and then transduced with either lentivirus encoding eGFP or the chimeric HP-fVIII (MOI = 5). Similar numbers of progenitor colonies grew in methylcellulose cultures for each construct indicating no increased toxicity resulting from HP-fVIII expression. Real-time PCR using genomic DNA isolated from pooled colonies from methylcellulose plates showed gene-marking levels of approximately 0.3 proviral genomes/diploid genome equivalent, thus indicating a transduction efficiency of approximately 30%. Furthermore, fVIII activity levels were greater in CD34+ cell cultures transduced with vectors encoding chimeric HP-fVIII (0.1 units/106 cells/24 hr) than negative control CD34+ cells transduced with vectors encoding eGFP (<0.01 units106 cells/24 hr). From these studies, it is concluded that humanized high-expression HP-fVIII transgenes can be utilized to significantly increase fVIII expression levels in the context of future clinical gene transfer-based therapies for hemophilia A.


Blood ◽  
2001 ◽  
Vol 98 (3) ◽  
pp. 610-617 ◽  
Author(s):  
Chunyan Zhang ◽  
Michael A. Thornton ◽  
M. Anna Kowalska ◽  
Bruce S. Sachis ◽  
Michael Feldman ◽  
...  

Abstract The genes for the related human (h) chemokines, PBP (platelet basic protein) and PF4 (platelet factor 4), are within 5.3 kilobases (kb) of each other and form a megakaryocyte-specific gene locus. The hypothesis was considered that the PBP and PF4 genes share a common distal regulatory region(s) that leads to their high-level megakaryocyte-specific expression in vivo. This study examined PBP and PF4 expression in transgenic mice using 4 distinct humanPBP/PF4 gene locus constructs. These studies showed that within the region studied there was sufficient information to regulate tissue-specific expression of both hPBP and hPF4. Indeed this region contained sufficient DNA information to lead to expression levels of PBP and PF4 comparable to the homologous mouse genes in a position-independent, copy number–dependent fashion. These studies also indicated that the DNA domains that led to this expression were distinct for the 2 genes; hPBP expression is regulated by a region that is 1.5 to 4.4 kb upstream of that gene. Expression of hPF4 is regulated by a region that is either intergenic between the 2 genes or immediately downstream of the hPF4 gene. Comparison of the available human and mouse sequences shows conserved flanking region domains containing potential megakaryocyte-related transcriptional factor DNA-binding sites. Further analysis of these regulatory regions may identify enhancer domains involved in megakaryopoiesis that may be useful in the selective expression of other genes in megakaryocytes and platelets as a strategy for regulating hemostasis, thrombosis, and inflammation.


2019 ◽  
Vol 28 (R1) ◽  
pp. R24-R30 ◽  
Author(s):  
Yasuhiro Ikawa ◽  
Annarita Miccio ◽  
Elisa Magrin ◽  
Janet L Kwiatkowski ◽  
Stefano Rivella ◽  
...  

Abstract Recently, gene therapy clinical trials have been successfully applied to hemoglobinopathies, such as sickle cell disease (SCD) and β-thalassemia. Among the great discoveries that led to the design of genetic approaches to cure these disorders is the discovery of the β-globin locus control region and several associated transcription factors, which determine hemoglobin switching as well as high-level, erythroid-specific expression of genes at the ß-globin locus. Moreover, increasing evidence shows that lentiviral vectors are efficient tools to insert large DNA elements into nondividing hematopoietic stem cells, showing reassuring safe integration profiles. Alternatively, genome editing could restore expression of fetal hemoglobin or target specific mutations to restore expression of the wild-type β-globin gene. The most recent clinical trials for β-thalassemia and SCD are showing promising outcomes: patients were able to discontinue transfusions or had reduced transfusion requirements. However, toxic myeloablation and the high cost of current ex vivo hematopoietic stem cell gene therapy platforms represent a barrier to a widespread application of these approaches. In this review, we summarize these gene therapy strategies and ongoing clinical trials. Finally, we discuss possible strategies to improve outcomes, reduce myeloablative regimens and future challenges to reduce the cost of gene therapy platform.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1176-1176 ◽  
Author(s):  
Julie Kanter ◽  
Mark C. Walters ◽  
Matthew M. Hsieh ◽  
Lakshmanan Krishnamurti ◽  
Janet Kwiatkowski ◽  
...  

Abstract β-globin gene transfer into hematopoietic stem cells (HSCs) has the potential to reduce or eliminate the symptoms and long-term complications of severe sickle cell disease (SCD). LentiGlobin Drug Product (DP) is a gene therapy product containing autologous CD34+ cells transduced with the BB305 lentiviral vector. BB305 encodes a human β-globin gene containing a single point mutation (AT87Q) designed to confer anti-sickling properties similar to those observed in fetal hemoglobin (γ-globin). In two ongoing studies, subjects with transfusion-dependent β-thalassemia (Studies HGB-204 and HGB-205) or SCD (Study HGB-205) receiving LentiGlobin DP have demonstrated sustained expression of 3-9 g/dL therapeutic hemoglobin (HbAT87Q) and have shown marked improvements in clinical symptoms 1 year post-treatment. Study HGB-206 is a multi-center, Phase 1/2 safety and efficacy study of LentiGlobin DP in adults with severe SCD. We previously (ASH 2015) presented results from 2 subjects, who had 3 and 6 months of follow-up after LentiGlobin treatment. We now present data from 7 treated subjects, 4 of whom have ≥6 months of follow-up data. Subjects (≥18 years of age) with severe SCD (history of recurrent vaso-occlusive crisis [VOC], acute chest syndrome, stroke, or tricuspid regurgitant jet velocity of >2.5 m/s) were screened for eligibility. Following bone marrow harvest (BMH), CD34+ cells were transduced with the BB305 vector. Subjects underwent myeloablative conditioning with busulfan prior to infusion of the transduced cells. Safety assessments include adverse events (AEs), integration site analysis (ISA) and surveillance for replication competent lentivirus (RCL). After infusion, subjects are monitored for hematologic engraftment, vector copy number (VCN), HbAT87Q expression, and other laboratory and clinical parameters. As of July 2016, 7 subjects with severe SCD (median age: 26 years, range 18-42 years) have received LentiGlobin DP in this study. All subjects successfully underwent BMH, with a median of 2 harvests required (range 1-4). Fifteen Grade 3 AEs in 5 subjects were attributed to BMH: pain (n=10), anemia (n=3) and VOC (n=2); all resolved with standard measures. Table 1 summarizes cell harvest, DP characteristics, and lab results. The median LentiGlobin DP cell dose was 2.1x10e6 CD34+ cells/kg (range 1.6-5.1) and DP VCN was 0.6 (0.3-1.3) copies/diploid genome. Median post-infusion follow-up as of July 2016 is 7.1 months (3.7-12.7 months). All subjects successfully engrafted after receiving LentiGlobin DP, with a median time to neutrophil engraftment of 22 days (17-29 days). The toxicity profile observed from start of conditioning to latest follow-up was consistent with myeloablative conditioning with single-agent busulfan. To date, there have been no DP-related ≥Grade 3 AEs or serious AEs, and no evidence of clonal dominance or RCL. The BB305 vector remains detectable at low levels in the peripheral blood of all subjects infused, with median VCN 0.08 (0.05-0.13, n=7) at last measurement. All subjects express HbAT87Q, with a median of 0.4g/dL (0.1-1.0 g/dL, n=7) at 3 months; most subjects demonstrated modest increases over time, and the 2 subjects with the longest follow-up expressed 0.31 and 1.2 g/dL HbAT87Q at 9 months. All 4 subjects with ≥6 months of follow-up experienced multiple VOCs in the 2 years prior to study entry (2-27.5 VOCs annually). Since LentiGlobin DP infusion, 3 of these 4 subjects have had fewer VOCs, although this trend may be confounded by the short follow-up, the effects of transplant conditioning, and/or post-transplant RBC transfusions. The decrease in VCN between DP and peripheral cells contrasts with previous reports of successful LentiGlobin gene therapy in ongoing studies HGB-204 and HGB-205. The relatively low in vivo VCN in this study appears to result in the lower HbAT87Q expression seen to date. We are exploring multiple hypotheses as to the etiology of the VCN drop between DP and peripheral blood, including the adverse impact of sickle marrow pathology on HSCs, the adequacy of myeloablation, and the magnitude of the transduced cell dose. We will provide an update on study data and ongoing efforts to increase in vivo VCN in patients with SCD, such as increasing the transduced cell dose through alternate HSC procurement methods or enhancing the DP VCN through manufacturing improvements. Disclosures Kanter: Novartis: Consultancy. Walters:Bayer HealthCare: Honoraria; AllCells, Inc./LeukoLab: Other: Medical Director ; ViaCord Processing Laboratory: Other: Medical Director ; Leerink Partners, LLC: Consultancy; Kiadis Pharma: Honoraria; bluebirdBio, Inc: Honoraria. Kwiatkowski:Ionis pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Shire Pharmaceuticals: Consultancy; Sideris Pharmaceuticals: Consultancy; Apopharma: Research Funding; Luitpold Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees. von Kalle:bluebird bio: Consultancy; GeneWerk: Equity Ownership. Kuypers:Children's Hospital Oakland Research Institute: Employment; bluebird bio: Consultancy. Leboulch:bluebird bio: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding. Joseney-Antoine:bluebird bio: Employment, Equity Ownership. Asmal:bluebird bio: Employment, Equity Ownership. Thompson:bluebird bio: Consultancy, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding; Amgen: Research Funding; Baxalta (now part of Shire): Research Funding; ApoPharma: Consultancy, Membership on an entity's Board of Directors or advisory committees; Mast: Research Funding; Eli Lily: Research Funding.


Blood ◽  
1991 ◽  
Vol 77 (4) ◽  
pp. 855-860
Author(s):  
M Donovan-Peluso ◽  
S Acuto ◽  
D O'Neill ◽  
A Hom ◽  
A Maggio ◽  
...  

We have constructed fusion genes comprised of gamma and beta globin elements and globin sequences linked to neomycin resistance (neoR) genes to define the cis acting sequences responsible for developmental stage-specific expression and induction of fetal globin genes in embryonic-fetal erythroleukemia K562 cells. The results indicate that the gamma promoter is required for proper initiation of transcription. However, the accumulation of gamma globin transcripts in response to hemin induction requires the additional presence of either gamma intervening sequence 2 or the 3′ enhancer element of the beta globin gene. Thus, the gamma promoter may provide the elements for developmental stage-specific gene expression during fetal life. By contrast, the beta 3′ enhancer is erythroid-specific but not developmental stage- or gene-specific.


1999 ◽  
Vol 82 (08) ◽  
pp. 562-571 ◽  
Author(s):  
Steven Josephs ◽  
Jiemin Zhou ◽  
Xiangming Fang ◽  
Ramón Alemany ◽  
Cristina Balagué ◽  
...  

IntroductionHemophilia A and B are the most common bleeding disorders caused by deficiencies of clotting factors VIII and IX, respectively, both of which are X-linked with a recessive heredity.1 Replacement of the deficient factors with frequent intravenous injections of plasma concentrates or recombinant proteins is the standard treatment for these diseases.2 Great efforts have been made for nearly a decade toward developing experimental gene therapy for these diseases and aiming at the development of a medical intervention that is more effective and convenient than the currently available replacement therapies.3 Hemophilia is a suitable clinical model for the development of gene therapy products and has a number of advantages: 1) there is a simple and well defined cause-and-effect relationship between the protein deficiencies and bleeding symptoms; 2) tissue-specific expression and precise regulation of the transgenes are not necessary; 3) well characterized animal models are available for preclinical studies; 4) an unequivocal endpoint for product efficacy can be assessed in clinical trials; and 5) even 1% to 5% of the normal physiological levels of the proteins is therapeutic.For gene therapy of hemophilia, the most challenging hurdle, with respect to the long-term expression of the deficient proteins at adequate levels, is the development of a suitable gene delivery system. Technologies have been evolving from ex vivo to in vivo approaches, from initial use of retroviral vector to recent application of adenviral (Ad) or adeno-associated virus (AAV) vector, demonstrating progress from early results of transient low-level expression to more sustained high-level expression.3 For hemophilia A treatment, Ad vectors are particularly useful, since the liver naturally produces factor VIII, and following intravenous (i.v.) injection, Ad vectors concentrate in the liver. This makes the gene transduction efficiency to liver very high. Adenovirus vectors have been developed for gene therapy due to their high titer, broad infectivity, potential for large payload, and in vivo gene delivery capacity.4 Although the immunogenicity and cytotoxicity associated with the early-generation Ad vectors have been a concern with respect to their clinical application, newly developed vectors, in which the viral coding sequences have been deleted, have significantly reduced the side effects associated with the vectors. The “gutless” Ad vector, or so called helper-dependent, large-capacity, or mini- Ad vectors are the representative examples of these new-generation Ad vectors.5-15 The mini-Ad vector system described in this report was developed based on two major research findings. First, an Ad- SV40 hybrid virus discovered during attempts to grow human Ad in non-permissive monkey COS-7 cells.16 The hybrid virus had a genome structure in which only both ends of the Ad sequences were retained and almost all coding sequences of the Ad genome were replaced by symmetric, tandemly repeated SV40 genomes. The hybrid viruses replicated and were packaged in the presence of a wild-type Ad as a helper. This finding implied that total replacement of the Ad genome was possible to form a mini-Ad vector as long as proper helper function and selective pressure was provided. Secondly, it was discovered that Ad packaging can be attenuated by deleting portions of the packaging signal.17 This finding provided a means to put selective pressure on the helper Ad (referred to as ancillary Ad) by specifically limiting its packaging process and allowing a preferential packaging of the mini-Ad. The system, therefore, is designed to have three main components: the mini-Ad vector, the E1-deleted ancillary Ad, and a production cell line that provides AdE1 complementation.Based on the mini-Ad vector system, MiniAdFVIII was developed. The MiniAdFVIII vector carries a 27 kb expression cassette, in which the full-length human factor VIII cDNA is flanked by a human albumin promoter and cognate genomic sequences. Infection of MiniAdFVIII in vitro showed that the vector mediated expression of functional human factor VIII at levels of 100-200 ng/106 cells per 24 hours in HepG2 and 293 cells. With single-dose intravenous injection of 1011 viral particles in hemophilic mice, MiniAdFVIII produced a sustained high-level expression of human factor VIII (at 100-800 ng/ml for up to 369 days) that corrected the factor VIII-deficient phenotype. Safety studies of MiniAdFVIII showed that there were no significant toxicities in mice and dogs after a single intravenous dose of up to 3×1011 and 6×1012 viral particles, respectively. In this report, other studies for developing the MiniAdFVIII vector with a site-specific integration capability and the development of a human factor VIII-tolerized mouse model for preclinical studies of MiniAdFVIII are described.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2263-2263
Author(s):  
Nadia Felli ◽  
Elvira Pelosi ◽  
Rosanna Botta ◽  
Laura Fontana ◽  
Valentina Lulli ◽  
...  

Abstract MicroRNAs (miRs) are a class of a small (~ 22nt) RNAs, which play an important role in the negative regulation of gene expression by base-pairing to complementary sites on the target mRNAs. While it is established that miRs are involved in a variety of basic processes, e.g., cell proliferation and apoptosis, neural development, fat metabolism and stress response, little is known on their expression and function in hematopoiesis. In order to investigate miR expression in erythropoietic (E), megakaryocytic (Mk), granulopoietic (G) and monocytopoietic (Mo) lineages, we have assayed their level at discrete sequential stages of the E, Mk, G or Mo series in unilineage differentiation/maturation cultures of cord blood (CB) CD34+ cells. The analysis was performed using a microarray chip containing as probes gene-specific 40mer oligonucleotides, generated from 161 human and 84 mouse precursors miRs (Liu GC et al., PNAS, 2004). Northern blot analysis confirmed the microarray data. The results indicate that the majority of the analyzed miRs is not expressed in CB hematopoietic cells. However, 49 miRs are expressed at significant levels in CD34+ cells: in most cases the expression level declines during hematopoietic differentiation according to diverse patterns, i.e., the decline may be more or less pronounced, more or less rapid and differ in the diverse hematopoietic lineages. As expression pattern examples, we observed that: (a) miR 223 is strongly downmodulated in the E lineage, whereas its level is not affected or increased in the other series; (b) miR 221 and 222 level sharply declines in the E lineage, while the drop is less pronounced in the Mk, G and Mo series; conversely, (c) miR 17, 20, 106 are downmodulated prevalentely in the G/Mo series, as compared to the E/Mk lineages. Interestingly, cluster analysis indicates that miR expression in hematopoietic cells is sharply different from that observed in CB T lymphocytes. The lineage- and stage-specific pattern of miR expression is of functional relevance. As an example, transfection of miR 222 oligonucleotide into CD34+ cells grown in multilineage clonogenic culture causes a pronounced shift from E to GM colony formation, indicating modulation of the lineage commitment of hematopoietic progenitors. The target genes of miRs expressed in hematopoietic cells are often of pivotal functional significance, e.g., miR 222 targets the kit receptor (N. Felli et al., this Meeting). A single miR may target diverse mRNAs, e.g., miR 222 targets kit, Ets1 and Fli1. Conversely, a single mRNA may be targeted by different miRs, e.g.,, kit is targeted by miR 146, 221 and 222. Noterworthily, the miR expression pattern in primitive hematopoietic cells and their progeny is fully distinct from that observed in primitive mesenchymal and neural cells (i.e., “neurospheres”) and their progeny: this suggests that miR downmodulation during differentiation of primitive cells contributes to tissue-specific gene expression by unblocking translational repression of the target mRNAs.


Sign in / Sign up

Export Citation Format

Share Document