scholarly journals Long-Term Transfer and Expression of the Human β-Globin Gene in a Mouse Transplant Model

Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3414-3422 ◽  
Author(s):  
Harry Raftopoulos ◽  
Maureen Ward ◽  
Philippe Leboulch ◽  
Arthur Bank

Abstract Somatic gene therapy of hemoglobinopathies depends initially on the demonstration of safe, efficient gene transfer and long-term, high-level expression of the transferred human β-globin gene in animal models. We have used a β-globin gene/β-locus control region retroviral vector containing several modifications to optimize gene transfer and expression in a mouse transplant model. In this report we show that transplantation of β-globin–transduced hematopoietic cells into lethally irradiated mice leads to the continued presence of the gene up to 8 months posttransplantation. The transferred human β-globin gene is detected in 3 of 5 mice surviving long term (>4 months) transplanted with bone marrow cells transduced with high-titer virus. Southern blotting confirms the presence of the unrearranged 5.1-kb human β-globin gene-containing provirus in 2 of these mice. In addition, long-term expression of the transferred gene is seen in 2 mice at levels of 5% and 20% that of endogenous murine β-globin at 6 and 8 months posttransplantation. We further document stem cell transduction by the successful transfer and high-level expression of the human β-globin gene from mice transduced 9 months earlier into irradiated secondary recipient mice. These results demonstrate high-level, long-term somatic human β-globin gene transfer into the hematopoietic stem cells of an animal for the first time, and suggest the potential feasibility of a retroviral gene therapy approach to sickle cell disease and the β thalassemias.

Hematology ◽  
2010 ◽  
Vol 2010 (1) ◽  
pp. 445-450 ◽  
Author(s):  
Paritha Arumugam ◽  
Punam Malik

AbstractBeta-thalassemia is a genetic disorder with mutations in the β-globin gene that reduce or abolish β-globin protein production. Patients with β-thalassemia major (Cooley's anemia) become severely anemic by 6 to 18 months of age, and are transfusion dependent for life, while those with thalassemia intermedia, a less-severe form of thalassemia, are intermittently or rarely transfused. An allogeneically matched bone marrow transplant is curative, although it is restricted to those with matched donors. Gene therapy holds the promise of “fixing” one's own bone marrow cells by transferring the normal β-globin or γ-globin gene into hematopoietic stem cells (HSCs) to permanently produce normal red blood cells. Requirements for effective gene transfer for the treatment of β-thalassemia are regulated, erythroid-specific, consistent, and high-level β-globin or γ-globin expression. Gamma retroviral vectors have had great success with immune-deficiency disorders, but due to vector-associated limitations, they have limited utility in hemoglobinopathies. Lentivirus vectors, on the other hand, have now been shown in several studies to correct mouse and animal models of thalassemia. The immediate challenges of the field as it moves toward clinical trials are to optimize gene transfer and engraftment of a high proportion of genetically modified HSCs and to minimize the adverse consequences that can result from random integration of vectors into the genome by improving current vector design or developing novel vectors. This article discusses the current state of the art in gene therapy for β-thalassemia and some of the challenges it faces in human trials.


Blood ◽  
2008 ◽  
Vol 111 (12) ◽  
pp. 5537-5543 ◽  
Author(s):  
Grant D. Trobridge ◽  
Brian C. Beard ◽  
Christina Gooch ◽  
Martin Wohlfahrt ◽  
Philip Olsen ◽  
...  

AbstractLentiviral vectors are attractive for hematopoietic stem cell (HSC) gene therapy because they do not require mitosis for nuclear entry, they efficiently transduce hematopoietic repopulating cells, and self-inactivating (SIN) designs can be produced at high titer. Experiments to evaluate HIV-derived lentiviral vectors in nonhuman primates prior to clinical trials have been hampered by low transduction frequencies due in part to host restriction by TRIM5α. We have established conditions for efficient transduction of pigtailed macaque (Macaca nemestrina) long-term repopulating cells using VSV-G–pseudotyped HIV-based lentiviral vectors. Stable, long-term, high-level gene marking was observed in 3 macaques using relatively low MOIs (5-10) in a 48-hour ex vivo transduction protocol. All animals studied had rapid neutrophil engraftment with a median of 10.3 days to a count greater than 0.5 × 109/L (500/μL). Expression was detected in all lineages, with long-term marking levels in granulocytes at approximately 20% to 30%, and in lymphocytes at approximately 12% to 23%. All animals had polyclonal engraftment as determined by analysis of vector integration sites. These data suggest that lentiviral vectors should be highly effective for HSC gene therapy, particularly for diseases in which maintaining the engraftment potential of stem cells using short-term ex vivo transduction protocols is critical.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 74-83 ◽  
Author(s):  
SJ Szilvassy ◽  
S Cory

Abstract Efficient gene delivery to multipotential hematopoietic stem cells would greatly facilitate the development of effective gene therapy for certain hematopoietic disorders. We have recently described a rapid multiparameter sorting procedure for significantly enriching stem cells with competitive long-term lymphomyeloid repopulating ability (CRU) from 5-fluorouracil (5-FU)-treated mouse bone marrow. The sorted cells have now been tested as targets for retrovirus-mediated delivery of a marker gene, NeoR. They were cocultured for 4 days with fibroblasts producing a high titer of retrovirus in medium containing combinations of the hematopoietic growth factors interleukin-3 (IL-3), IL-6, c-kit ligand (KL), and leukemia inhibitory factor (LIF) and then injected into lethally irradiated recipients, together with sufficient “compromised” bone marrow cells to provide short-term support. Over 80% of the transplanted mice displayed high levels (> or = 20%) of donor- derived leukocytes when analyzed 4 to 6 months later. Proviral DNA was detected in 87% of these animals and, in half of them, the majority of the hematopoietic cells were marked. Thus, infection of the stem cells was most effective. The tissue and cellular distribution of greater than 100 unique clones in 55 mice showed that most sorted stem cells had lymphoid as well as myeloid repopulating potential. Secondary transplantation provided strong evidence for infection of very primitive stem cells because, in several instances, different secondary recipients displayed in their marrow, spleen, thymus and day 14 spleen colony-forming cells the same proviral integration pattern as the primary recipient. Neither primary engraftment nor marking efficiency varied for stem cells cultured in IL-3 + IL-6, IL-3 + IL-6 + KL, IL-3 + IL-6 + LIF, or all four factors, but those cultured in IL-3 + IL-6 + LIF appeared to have lower secondary engraftment potential. Provirus expression was detected in 72% of the strongly marked mice, albeit often at low levels. Highly efficient retroviral marking of purified lymphomyeloid repopulating stem cells should enhance studies of stem cell biology and facilitate analysis of genes controlling hematopoietic differentiation and transformation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1137-1137
Author(s):  
Tong Wu ◽  
Hyeoung Joon Kim ◽  
Stephanie E. Sellers ◽  
Kristin E. Meade ◽  
Brian A. Agricola ◽  
...  

Abstract Low-level retroviral transduction and engraftment of hematopoietic long-term repopulating cells in large animals and humans remain primary obstacles to the successful application of hematopoietic stem cell(HSC) gene transfer in humans. Recent studies have reported improved efficiency by including stromal cells(STR), or the fibronectin fragment CH-296(FN), and various cytokines such as flt3 ligand(FLT) during ex vivo culture and transduction in nonhuman primates. In this work, we extend our studies using the rhesus competitive repopulation model to further explore optimal and transduction in the presence of either preformed autologous STR or immobilized FN. Long-term clinically relevant gene marking levels in multiple hematopoietic lineages from both conditions were demonstrated in vivo by semiquantitative PCR, colony PCR, and genomic Southern blotting, suggesting that FN could replace STR in ex vivo transduction protocols. Second, we compared transduction on FN in the presence of IL-3, IL-6, stem cell factor(SCF), and FLT(our best cytokine combination in prior studies)with a combination of megakaryocyte growth and development factor(MGDF), SCF, and FLT. Gene marking levels were equivalent in these animals, with no significant effect on retroviral gene transfer efficiency assessed in vivo by the replacement of IL-3 and IL-6 with MGDF. Our results indicate that SCF/G-CSF-mobilized PB CD34+ cells are transduced with equivalent efficiency in the presence of either STR or FN, with stable long-term marking of multiple lineages at levels of 10–15% and transient marking as high as 54%. These results represent an advance in the field of HSC gene transfer using methods easily applied in the clinical setting.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4715-4715
Author(s):  
Mengqun Tan ◽  
Zhenqing Liu ◽  
Juan Zhang ◽  
Zhiyan Li ◽  
Liujiang Song ◽  
...  

Abstract Abstract 4715 β -Thalassemia is one of the most common worldwide monogenic human diseases,caused by molecular defects in the human β -globin gene cluster leading to decrease or absence of β-globin. Loss of β -globin chains causes ineffective production of oxygen-carrying hemoglobin and therefore results in severe anemia. The treatment for β -Thalassemia major usually includes lifelong blood transfusions but chronic blood transfusion often causes iron overload, and accumulated iron produces tissue damage in multiple organs, so that iron chelating treatment is also needed. Bone marrow transplantation is another effective therapy, which can eliminate a patient's dependence on blood transfusions, however, it is difficult to find a matching donor for most patients; therefore it is only available for a minority of patients. Gene therapy is one potential novel therapy for treatment of inherited monogenic disorders. The long–term therapeutic strategy for this disease is to replace the defective β-globin gene via introduction of a functional gene into hematopoietic stem cells (HSCs). Adeno-associated virus type 2 (AAV), a nonpathogenic human parvovirus, has gained attention as a potentially useful vector for human gene therapy. AAV can infect both dividing and non-dividing cells and wild AAV integrates preferentially at a specific site on human chromosome 19. In the absence of helper virus, recombinant AAV will stably integrate into the host cell genome, mediating long-term and stable expression of the transgene. In this study, we used a hybrid rAAV6/2 vector carrying the human β-globin gene to transduce HSCs from a β -Thalassemia patient, followed by transplantation into irradiated BALB/c nude mice. One month post-transplantation, Hb was prepared from peripheral blood and analyzed by Western Blot and HPLC respectively. RNA and DNA were isolated from bone marrow cells (BMCs) from recipient mice transplanted with mock-infected or hybrid rAAV–globin-infected cells and analyzed by RT-PCR and PCR respectively. The results showed: 1. Human β-actin and β-globin transcripts were detected by RT-PCR in BMCs from all recipient mice, indicating that human HSCs were successfully transplanted in these mice and that the human β-globin gene was transcriptionally active in the donor cells. 2. The level of human hemoglobin expressed in peripheral red blood cells of recipient mice as measured by HPLC (ratio of β/α) was increased to 0.3 from 0.05 of pre-transplantation levels. Expression of human β-globin was also confirmed in recipient mice by Western Blot; a 2–3-fold increase compared with that of controls. Our results indicate that human HSCs from a β-Thalassemia patient can be efficiently transduced by a hybrid rAAV6/2-β-globin vector followed by expression of normal human β-globin protein. This study provides a proof-of-concept that rAAV6/2-mediated gene transfer into human HSCs might be a potential approach for gene therapy of β-Thalassemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2001 ◽  
Vol 98 (9) ◽  
pp. 2664-2672 ◽  
Author(s):  
Francois Moreau-Gaudry ◽  
Ping Xia ◽  
Gang Jiang ◽  
Natalya P. Perelman ◽  
Gerhard Bauer ◽  
...  

AbstractUse of oncoretroviral vectors in gene therapy for hemoglobinopathies has been impeded by low titer vectors, genetic instability, and poor expression. Fifteen self- inactivating (SIN) lentiviral vectors using 4 erythroid promoters in combination with 4 erythroid enhancers with or without the woodchuck hepatitis virus postregulatory element (WPRE) were generated using the enhanced green fluorescent protein as a reporter gene. Vectors with high erythroid-specific expression in cell lines were tested in primary human CD34+ cells and in vivo in the murine bone marrow (BM) transplantation model. Vectors containing the ankyrin-1 promoter showed high-level expression and stable proviral transmission. Two vectors containing the ankyrin-1 promoter and 2 erythroid enhancers (HS-40 plus GATA-1 or HS-40 plus 5-aminolevulinate synthase intron 8 [I8] enhancers) and WPRE expressed at levels higher than the HS2/β-promoter vector in bulk unilineage erythroid cultures and individual erythroid blast-forming units derived from human BM CD34+ cells. Sca1+/lineage− Ly5.1 mouse hematopoietic cells, transduced with these 2 ankyrin-1 promoter vectors, were injected into lethally irradiated Ly5.2 recipients. Eleven weeks after transplantation, high-level expression was seen from both vectors in blood (63%-89% of red blood cells) and erythroid cells in BM (70%-86% engraftment), compared with negligible expression in myeloid and lymphoid lineages in blood, BM, spleen, and thymus (0%-4%). The I8/HS-40–containing vector encoding a hybrid human β/γ-globin gene led to 43% to 113% human γ-globin expression/copy of the mouse α-globin gene. Thus, modular use of erythroid-specific enhancers/promoters and WPRE in SIN-lentiviral vectors led to identification of high-titer, stably transmitted vectors with high-level erythroid-specific expression for gene therapy of red cell diseases.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1286-1286
Author(s):  
Claudia Ball ◽  
Manfred Schmidt ◽  
Ingo Pilz ◽  
Monika Schrempp ◽  
Christof von Kalle ◽  
...  

Abstract In vivo selection of gene modified hematopoietic stem cells permanently increases the relative proportion of blood cells that carry a therapeutic transgene despite initially low gene transfer efficiency, thereby decreasing the likelihood of insertional mutagenesis and avoiding the need of myeloablative conditioning regimens. P140K Mutant O6-methylguanine-DNA methyltransferase (MGMT) enzyme confers resistance to the combination of the MGMT inhibitor O(6)-benzylguanine (O(6)BG) and nitrosourea drugs such as 1,3-bis-(2 chloroethyl)-1-nitrosourea (BCNU). We have previously shown that reduced intensity and toxicity BCNU/O6-BG selection allows efficient selection of MGMT-P140K expressing oligoclonal murine hematopoiesis. Nevertheless, whether long-term selection and the associated proliferative stress impairs long-term differentiation and proliferation of MGMT-P140K expressing stem cell clones is currently unknown and remains a major concern in the clinical application of MGMT selection. To address this question, serial transplantations of murine MGMT-P140K expressing hematopoiesis combined with repeated administrations of O6-BG and BCNU were done. After ex vivo gene transfer of an MGMT/IRES/eGFP encoding retroviral vector, bone marrow cells were transplanted into syngeneic C57 BL/6J mice and primary, secondary and tertiary recipient mice were subsequently treated every four weeks in order to exaggerate potential effects on long-term clonal behaviour. Lineage contribution of the transduced hematopoiesis was monitored by FACS over a total of 14 rounds of selection and clonality by LAM-PCR over a total of 12 rounds of selection. In primary mice the percentage of transduced blood cells increased from 4.7 ± 0.8 % to 36.4 ± 9.8 % (n=12) and in secondary mice from 29.9 ± 7.2 % to 65.1 ± 8.7 % (n=18) after selection without persisting peripheral blood cytopenia. Lineage analysis showed an unchanged multilineage differentiation potential of transduced cells in 1st, 2nd and 3rd generation animals. LAM PCR analysis of peripheral blood samples revealed stable oligo- to polyclonal hematopoiesis in primary and secondary mice. Evidence for predominant clones or clonal exhaustion was not observed despite up to 12 rounds of BCNU/O6-BG treatment. Interestingly, pairs of secondary transplanted mice that received bone marrow cells from identical donors showed very similar clonal composition, engraftment kinetics under selection and lineage contribution of the transduced hematopoiesis, indicating extensive self-renewal of transplantable stem cells in the primary mice resulting in a net symmetric refilling of the stem cell compartment. In summary, we demonstrate that even extended selection of MGMT-P140K expressing hematopoietic stem cells by repetitive chemotherapy does not affect their differentiation or proliferation potential and does not result in clonal exhaustion. Our results have important implications for the clinical use of MGMT selection strategies for the amplification of a limited number of gene corrected clones in clinical gene therapy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 200-200
Author(s):  
Alessandro Aiuti ◽  
Ulrike Benninghoff ◽  
Barbara Cassani ◽  
Federica Cattaneo ◽  
Luciano Callegaro ◽  
...  

Abstract Severe combined immunodeficiency (SCID) due to adenosine deaminase (ADA) deficiency is a fatal congenital disorder of the immune system associated with systemic toxicity due to accumulation of purine metabolites. We previously showed that retroviral-mediated ADA gene transfer into autologous hematopoietic stem/progenitor cells (HSC) allowed restoration of immune and metabolic functions. We have now enrolled eight ADA-SCID children (age: 7–67 months) in our phase I/II gene therapy trial in which HSC are combined with low intensity conditioning with busulfan (total dose 4 mg/Kg i.v.). Previous treatment included haploidentical bone marrow transplant (n=3) or long-term (>1 year) enzyme replacement therapy (PEG-ADA) (n=4) associated with insufficient immune reconstitution or severe autoimmunity. In the latter case, PEG-ADA was discontinued to favour the growth advantage for gene corrected cells. The patients received a median dose of 8.8x106/Kg bone marrow CD34+ cells (range 0.9–10.8), containing on average 26.2±9.6% transduced CFU-C. Five patients experienced ANC <0.5x109/L, which was extended beyond day +30 in two patients. With a median follow up of 3.1 years (range 0.4–5.9), no adverse events related to gene transfer have been observed. Long-term engraftment of transduced HSC was demonstrated by stable multilineage marking, persisting more than 5 years from gene therapy. The average proportion of transduced cells in the peripheral blood at one year post-gene therapy (n=6) was 5% for granulocytes, 95% for T cells, 56% for B cells and 62% for NK cells. Comparison of the insertion sites retrieved ex vivo from patients with those identified in pre-transplant transduced CD34+ cells showed no skewing in the profile of genome distributions or in the gene families hit by the vector, and no clonal expansion. In the six children with a follow-up >1 year after gene therapy, we observed a progressive increase in lymphocyte counts which was sustained over time (median at 1.5 years 1.6x109/L), polyclonal thymopoiesis and normalization of T-cell functions in vitro. Serum Ig levels improved and evidence of antigen-specific antibodies was obtained, leading to IVIG discontinuation in five patients. All the children are currently healthy and thriving, and none of them showed severe infections. Sustained ADA activity in lymphocytes and RBC resulted in a dramatic reduction of RBC purine toxic metabolites (dAXP<30 nmoles/ml in 5 patients) and amelioration of children’s growth and development. In summary, these data confirm that gene therapy is safe and efficacious in correcting both the immune and metabolic defect in ADA-SCID, with proven clinical benefit.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3271-3271
Author(s):  
Claudia R. Ball ◽  
Manfred Schmidt ◽  
Ingo H. Pilz ◽  
Fessler Sylvia ◽  
David A. Williams ◽  
...  

Abstract Gene therapy is a promising approach for the therapy of hereditary diseases, but after the occurrence of adverse side effects in a SCID-X1 gene therapy trial increased biological safety has become a major goal of gene therapy. A reduction of the number of transplanted cells could help achieve this goal by reducing the statistical likelihood of insertional mutagenesis simply by simply reducing the number of transplanted cells carrying potentially untoward insertion sites. As we have previously shown, incorporation of the selectable marker gene MGMT P140K into a retroviral vector allows a reduced intensity and toxicity in vivo selection of low numbers of genetically modified hematopoietic cells by chemotherapy with O6-benzylguanine (O6BG) and nitrosourea drugs such as 1,3-bis-2 chloroethyl-1-nitrosourea (BCNU). However, it is still not known whether extended selection over longer periods of time influences the long-term proliferation and differentiation capacity of murine haematopoietic stem cells. To address this question, serial transplantations of murine MGMT-P140K-expressing hematopoiesis combined with repeated administrations of O6-BG and BCNU were performed. After ex vivo gene transfer of a MGMT/IRES/eGFP-encoding retroviral vector, bone marrow cells were transplanted into syngeneic C57 BL/6J mice and serially transplanted. First, 2nd and 3rd generation recipient mice were subsequently treated every four weeks in order to amplify treatment effects on the long-term clonal behaviour of modified hematopoietic stem cells. Lineage contribution of transduced hematopoiesis was monitored by FACS over a total of 17 rounds of selection and clonality was monitored by LAM-PCR over a total of 16 rounds of selection. In primary mice, the percentage of transduced blood cells increased from 4.7 ± 0.8 % to 36.4 ± 9.8 % (n=12) and in secondary mice from 29.9 ± 7.2 % to 65.1 ± 8.7 % (n=18) after selection without inducing persistent peripheral blood cytopenia. Lineage analysis showed an unchanged multilineage differentiation potential in the transduced compared to control cells in 1st and 2nd generation animals. LAM PCR analysis of peripheral blood revealed stable oligo- to polyclonal hematopoiesis in 1st, 2nd and 3rd generation mice. Evidence of predominant clones or clonal exhaustion was not observed despite of up to 16 rounds of BCNU/O6-BG treatment. Interestingly, pairs of secondary transplanted mice which had received bone marrow cells from identical donors showed very similar clonal composition, engraftment kinetics under selection and lineage contribution of the transduced hematopoiesis. This is molecular proof that extensive self-renewal of transplantable stem cells had occurred in the primary mice resulting in a net symmetric refilling of the stem cell compartment. In summary, we demonstrate that even extended selection of MGMT-P140K-expressing hematopoietic stem cells by repetitive chemotherapy does not affect differentiation or proliferation potential and does not result in clonal exhaustion. Our results have important implications for the clinical use of MGMT selection strategies intending to employ amplification of a limited number of genetically modified clones in clinical gene therapy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3259-3259
Author(s):  
Yoo-Jin Kim ◽  
Nadia L. Hussein ◽  
Peiman Hematti ◽  
Bum-Kee Hong ◽  
Boris Calmels ◽  
...  

Abstract Murine leukemia virus (MLV) vectors have been studied extensively in animal models and utilized for over a decade in clinical trials of gene therapy directed at hematopoietic stem and progenitor cells MLV have a number of limitations, including inefficient transduction of quiescent cells and difficulty in maintaining stable high-level expression. More recently concerns have arisen regarding their safety regarding activation of adjacent proto-oncogenes and resultant leukemogenesis. We have previously reported that lentiviral vectors derived from the simian immunodeficiency virus (SIV) were efficient at transducing rhesus CD34+ cells, resulting in high-level in vivo marking with transduced progeny cells up to one year post-transplantation.(Hanawa et al, 2004) A comparison of vector integration sites in these animals compared to animals receiving MLV-transduced cells revealed different patterns, showing that SIV integrants strongly favored entire transcription units and gene-dense regions of the genome, compared to MLV that favored regions surrounding transcription start sites.(Hematti et al, 2004). Animals receiving MLV-transduced cells had highly non-random engraftment with integrants in or near the the MDS1/EVI1 gene complex. To evaluate long-term safety implications of the SIV vector-mediated CD34+ cell gene transfer, we analyzed the insertional sites in granulocytes, T cell, and B cells from 3 rhesus macaques which were transplanted three years ago with transduced, autologous cytokine-mobilized peripheral blood CD34+ cells. All three animals continued to show significant marking and expression levels in T cells, B cells and granulocytes, with mean GFP + levels of 6.7% (range, 3.3–13.0%), 7.4% (4.2–13.4%) and 5.6% (3.1–10.5%), respectively. Vector insertion site analysis by linear amplification-mediated PCR method at three years continued to show highly polyclonal reconstitution. Subsequent cloning and sequencing data confirmed long-term polyclonality with vector-containing cells and there was no evidence for any worrisome common integration sites, with no integrants detected in the MDS1/EVI1 region, in contrast to results with the MLV vector. These results indicate that the SIV vector system can result in stable and efficient long-term expression in progeny of transduced CD34+ cells, without the worrisome integration profile previously reported in our model with MLV vectors.


Sign in / Sign up

Export Citation Format

Share Document