Macrophage colony stimulating factor modulates the development of hematopoiesis by stimulating the differentiation of endothelial cells in the AGM region

Blood ◽  
2002 ◽  
Vol 99 (7) ◽  
pp. 2360-2368 ◽  
Author(s):  
Ken-ichi Minehata ◽  
Yoh-suke Mukouyama ◽  
Takashi Sekiguchi ◽  
Takahiko Hara ◽  
Atsushi Miyajima

Definitive hematopoietic stem cells arise in the aorta–gonad–mesonephros (AGM) region from hemangioblasts, common precursors for hematopoietic and endothelial cells. Previously, we showed that multipotential hematopoietic progenitors and endothelial cells were massively produced in primary culture of the AGM region in the presence of oncostatin M. Here we describe a role for macrophage–colony-stimulating factor (M-CSF) in the development of hematopoietic and endothelial cells in AGM culture. The number of hematopoietic progenitors including multipotential cells was significantly increased in the AGM culture of op/opembryos. The addition of M-CSF to op/op AGM culture decreased colony-forming unit (CFU)-GEMM, granulocyte macrophage–CFU, and erythroid–CFU, but it increased CFU-M. On the other hand, the number of cells expressing endothelial markers, vascular endothelial-cadherin, intercellular adhesion molecule 2, and Flk-1 was reduced in op/op AGM culture. The M-CSF receptor was expressed in PCLP1+CD45− cells, the precursors of endothelial cells, and M-CSF up-regulated the expression of more mature endothelial cell markers—VCAM-1, PECAM-1, and E-selectin—in PCLP1+CD45− cells. These results suggest that M-CSF modulates the development of hematopoiesis by stimulating the differentiation of PCLP-1+CD45− cells to endothelial cells in the AGM region.

2000 ◽  
Vol 18 (24) ◽  
pp. 4077-4085 ◽  
Author(s):  
M. Fevzi Ozkaynak ◽  
Paul M. Sondel ◽  
Mark D. Krailo ◽  
Jacek Gan ◽  
Brad Javorsky ◽  
...  

PURPOSE: Ganglioside GD2is strongly expressed on the surface of human neuroblastoma cells. It has been shown that the chimeric human/murine anti-GD2monoclonal antibody (ch14.18) can induce lysis of neuroblastoma cells by antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. The purposes of the study were (1) to determine the maximum-tolerated dose (MTD) of ch14.18 in combination with standard dose granulocyte-macrophage colony-stimulating factor (GM-CSF) for patients with neuroblastoma who recently completed hematopoietic stem-cell transplantation (HSCT), and (2) to determine the toxicities of ch14.18 with GM-CSF in this setting.PATIENTS AND METHODS: Patients became eligible when the total absolute phagocyte count (APC) was greater than 1,000/μL after HSCT. ch14.18 was infused intravenously over 5 hours daily for 4 consecutive days. Patients received GM-CSF 250 μg/m2/d starting at least 3 days before ch14.18 and continued for 3 days after the completion of ch14.18. The ch14.18 dose levels were 20, 30, 40, and 50 mg/m2/d. In the absence of progressive disease, patients were allowed to receive up to six 4-day courses of ch14.18 therapy with GM-CSF. Nineteen patients with neuroblastoma were treated.RESULTS: A total of 79 courses were administered. No toxic deaths occurred. The main toxicities were severe neuropathic pain, fever, nausea/vomiting, urticaria, hypotension, mild to moderate capillary leak syndrome, and neurotoxicity. Three dose-limiting toxicities were observed among six patients at 50 mg/m2/d: intractable neuropathic pain, grade 3 recurrent urticaria, and grade 4 vomiting. Human antichimeric antibody developed in 28% of patients.CONCLUSION: ch14.18 can be administered with GM-CSF after HSCT in patients with neuroblastoma with manageable toxicities. The MTD is 40 mg/m2/d for 4 days when given in this schedule with GM-CSF.


Blood ◽  
1997 ◽  
Vol 89 (3) ◽  
pp. 863-872 ◽  
Author(s):  
Raffaella Soldi ◽  
Luca Primo ◽  
Maria Felice Brizzi ◽  
Fiorella Sanavio ◽  
Massimo Aglietta ◽  
...  

Abstract Besides the regulation of hematopoiesis, granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the expression of a functional program in endothelial cells (ECs) related to angiogenesis and to their survival in the bone marrow microenvironment. ECs express specific GM-CSF high-affinity binding sites, which mediate the proliferative and migratory response. We now report that ECs express the α and β subunits of GM-CSF receptor (GM-CSFR), and that GM-CSF is able to activate the Janus kinase (JAK)2, a member of the cytosolic tyrosine kinase family, which is known to mediate signals of several non–tyrosine kinase receptors. JAK2 tyrosine phoshorylation, as well as activation of its catalytic activity, is induced by subnanomolar concentrations of GM-CSF and occurs within 3 minutes of stimulation and persists at least for 10 minutes. The effect is specific as inferred by the lack of effect of heat-inactivated GM-CSF or neutralized by specific antibodies and by the finding that interleukin-5, which utilizes a specific α chain and the same β chain of GM-CSFR, does not phosphorylate JAK2. Furthermore, we show that the amount of JAK2 physically associated with GM-CSFR β chain is increased after GM-CSF stimulation and that GM-CSF triggers both β chain and JAK2 tyrosine phosphorylation. Taken together, these results suggest that biologic activities of GM-CSF in vascular endothelium may, in part, be elicited by GM-CSFR–mediated JAK2 activation.


1997 ◽  
Vol 15 (4) ◽  
pp. 1418-1426 ◽  
Author(s):  
S Frustaci ◽  
A Buonadonna ◽  
E Galligioni ◽  
D Favaro ◽  
A De Paoli ◽  
...  

PURPOSE To determine the maximum-tolerated dose (MTD) of 4'-epidoxorubicin (EPI) in combination with full dose of ifosfamide (IFO) when granulocyte-macrophage colony-stimulating factor (GM-CSF) was used, to estimate its clinical efficacy, and to evaluate the mobilization of hematopoietic progenitors. PATIENTS AND METHODS Previously untreated advanced patients were treated with fixed doses of IFO at 1.8 g/m2/d for 5 days and escalating doses of EPI. The starting dose level of EPI was 50 mg/m2 bolus on days 1 and 2; subsequent levels were 60 mg/m2 and 70 mg/ m2 given on days 1 and 2. GM-CSF (5 micrograms/kg/d) was administered from days +6 to +19. Clinical evaluation of response was performed after three consecutive cycles. Mobilization of hematopoietic progenitors was evaluated as day 14 CFU-GM after the first cycle only. RESULTS Overall, six, 18, and 13 assessable patients were entered onto each EPI dose level, respectively. The first and the second EPI level were considered feasible. Conversely, at the third level, only six of 13 patients [46%] tolerated full EPI doses at the scheduled time. Therefore, the dose-intensity of the three levels was 100%, 99.7%, and 86.1%, respectively. Overall, 20 of 37 patients (54%) obtained an objective response. The response rates for the three EPI dose levels were significantly different [17%, 33%, and 100%, respectively; test for trend, P < .001]. Considering only lung metastases, the overall response rate was 72% (20%, 66%, and 100% for the three EPI levels, respectively). The most relevant mobilization effect was obtained at the third EPI level, when both GM-CSF and IL-3 were used as in vitro-stimulating factors. CONCLUSION The third EPI level (70 mg/m2 on days 1 and 2) is the MTD of this program, since it was administered, without dose reduction or treatment delay, for three consecutive cycles in less than half of the patients. Nevertheless, this level proved to be interesting with regard to response rate (13 of 13 objective responses) and in mobilization of the hematopoietic progenitors.


Endocrinology ◽  
2011 ◽  
Vol 152 (5) ◽  
pp. 1911-1922 ◽  
Author(s):  
Hasnawati Saleh ◽  
Damien Eeles ◽  
Jason M. Hodge ◽  
Geoffrey C. Nicholson ◽  
Ran Gu ◽  
...  

IL-33 is an important inflammatory mediator in allergy, asthma, and joint inflammation, acting via its receptor, ST2L, to elicit Th2 cell cytokine secretion. IL-33 is related to IL-1 and IL-18, which both influence bone metabolism, IL-18 in particular inhibiting osteoclast formation and contributing to PTH bone anabolic actions. We found IL-33 immunostaining in osteoblasts in mouse bone and IL-33 mRNA expression in cultured calvarial osteoblasts, which was elevated by treatment with the bone anabolic factors oncostatin M and PTH. IL-33 treatment strongly inhibited osteoclast formation in bone marrow and spleen cell cultures but had no effect on osteoclast formation in receptor activator of nuclear factor-κB ligand/macrophage colony-stimulating factor-treated bone marrow macrophage (BMM) or RAW264.7 cultures, suggesting a lack of direct action on immature osteoclast progenitors. However, osteoclast formation from BMM was inhibited by IL-33 in the presence of osteoblasts, T cells, or mature macrophages, suggesting these cell types may mediate some actions of IL-33. In bone marrow cultures, IL-33 induced mRNA expression of granulocyte macrophage colony-stimulating factor, IL-4, IL-13, and IL-10; osteoclast inhibitory actions of IL-33 were rescued only by combined antibody ablation of these factors. In contrast to osteoclasts, IL-33 promoted matrix mineral deposition by long-term ascorbate treated primary osteoblasts and reduced sclerostin mRNA levels in such cultures after 6 and 24 h of treatment; sclerostin mRNA was also suppressed in IL-33-treated calvarial organ cultures. In summary, IL-33 stimulates osteoblastic function in vitro but inhibits osteoclast formation through at least three separate mechanisms. Autocrine and paracrine actions of osteoblast IL-33 may thus influence bone metabolism.


Sign in / Sign up

Export Citation Format

Share Document