scholarly journals Analysis of factor V in zebrafish demonstrates minimal levels needed for early hemostasis

2019 ◽  
Vol 3 (11) ◽  
pp. 1670-1680 ◽  
Author(s):  
Angela C. Weyand ◽  
Steve J. Grzegorski ◽  
Megan S. Rost ◽  
Kari I. Lavik ◽  
Allison C. Ferguson ◽  
...  

AbstractIn humans, coagulation factor V (FV) deficiency is a rare, clinically heterogeneous bleeding disorder, suggesting that genetic modifiers may contribute to disease expressivity. Zebrafish possess many distinct advantages including high fecundity, optical clarity, external development, and homology with the mammalian hemostatic system, features that make it ideal for genetic studies. Our aim was to study the role of FV in zebrafish through targeted mutagenesis and apply the model to the study of human F5 variants. CRISPR-mediated genome editing of the zebrafish f5 locus was performed, generating mutants homozygous for a 49 base pair deletion in exon 4. Thrombus formation secondary to vascular endothelial injury was absent in f5−/− mutant embryos and larvae. Despite this severe hemostatic defect, homozygous mutants survived before succumbing to severe hemorrhage in adulthood. Human F5 variants of uncertain significance from patients with FV deficiency were evaluated, and the causative mutations identified and stratified by their ability to restore thrombus formation in larvae. Analysis of these novel mutations demonstrates variable residual FV function, with minimal activity being required to restore hemostasis in response to laser-induced endothelial injury. This in vivo evaluation may be beneficial for patients whose factor activity levels lack correlation with bleeding symptomatology, although limitations exist. Furthermore, homozygous mutant embryos tolerate what is a severe and lethal defect in mammals, suggesting the possibility of species-specific factors enabling survival, and allowing further study not possible in the mouse. Identification of these factors or other genetic modifiers could lead to novel therapeutic modalities.

2019 ◽  
Author(s):  
Angela C. Weyand ◽  
Steve. J. Grzegorski ◽  
Megan. S. Rost ◽  
Kari. I. Lavik ◽  
Allison C. Ferguson ◽  
...  

ABSTRACTIn humans, coagulation factor V (F5) deficiency is a rare, clinically heterogeneous bleeding disorder, suggesting that genetic modifiers may contribute to disease expressivity. Complete loss of mouse F5 results in early lethality. Zebrafish possess many distinct advantages including high fecundity, optical clarity, external development, and homology with the mammalian hemostatic system, features that make it ideal for genetic studies. Our aim was to study the role of F5 in zebrafish through targeted mutagenesis, and apply the model to the study of humanF5variants. CRISPR-mediated genome editing of the zebrafishf5locus was performed, generating mutants homozygous for a 49 base pair deletion in exon 4. Thrombus formation secondary to vascular endothelial injury was absent inf5-/-mutant embryos and larvae. Despite this severe hemostatic defect, homozygous mutants survived before succumbing to severe hemorrhage in adulthood. HumanF5variants of uncertain significance from patients with F5 deficiency were evaluated, and the causative mutations identified and stratified by their ability to restore thrombus formation in larvae. Analysis of these novel mutations demonstrates variable residual F5 function, with minimal activity being required to restore hemostasis. Thisin vivoevaluation may be beneficial for patients whose factor activity levels lack correlation with bleeding symptomatology. Furthermore, homozygous mutant embryos tolerate what is a severe and lethal defect in mammals, suggesting the possibility of species-specific factors enabling survival, and allowing further study not possible in the mouse. Identification of these factors or other genetic modifiers could lead to novel therapeutic modalities.Key PointsF5 mutant fish embryos tolerate symptoms lethal in mammals but succumb to bleeding in adulthoodAnalysis of human variants demonstrate that all have some residual function and that minimal F5 activity is required to restore hemostasis


1998 ◽  
Vol 79 (05) ◽  
pp. 1041-1047 ◽  
Author(s):  
Kathleen M. Donnelly ◽  
Michael E. Bromberg ◽  
Aaron Milstone ◽  
Jennifer Madison McNiff ◽  
Gordon Terwilliger ◽  
...  

SummaryWe evaluated the in vivo anti-metastatic activity of recombinant Ancylostoma caninum Anticoagulant Peptide (rAcAP), a potent (Ki = 265 pM) and specific active site inhibitor of human coagulation factor Xa originally isolated from bloodfeeding hookworms. Subcutaneous injection of SCID mice with rAcAP (0.01-0.2 mg/mouse) prior to tail vein injection of LOX human melanoma cells resulted in a dose dependent reduction in pulmonary metastases. In order to elucidate potential mechanisms of rAcAP’s anti-metastatic activity, experiments were carried out to identify specific interactions between factor Xa and LOX. Binding of biotinylated factor Xa to LOX monolayers was both specific and saturable (Kd = 15 nM). Competition experiments using antibodies to previously identified factor Xa binding proteins, including factor V/Va, effector cell protease receptor-1, and tissue factor pathway inhibitor failed to implicate any of these molecules as significant binding sites for Factor Xa. Functional prothrombinase activity was also supported by LOX, with a half maximal rate of thrombin generation detected at a factor Xa concentration of 2.4 nM. Additional competition experiments using an excess of either rAcAP or active site blocked factor Xa (EGR-Xa) revealed that most of the total factor Xa binding to LOX is mediated via interaction with the enzyme’s active site, predicting that the vast majority of cell-associated factor Xa does not participate directly in thrombin generation. In addition to establishing two distinct mechanisms of factor Xa binding to melanoma, these data raise the possibility that rAcAP’s antimetastatic effect in vivo might involve novel non-coagulant pathways, perhaps via inhibition of active-site mediated interactions between factor Xa and tumor cells.


1999 ◽  
Vol 81 (01) ◽  
pp. 157-160 ◽  
Author(s):  
Ross Bentley ◽  
Suzanne Morgan ◽  
Karen Brown ◽  
Valeria Chu ◽  
Richard Ewing ◽  
...  

SummaryThe in vivo antithrombotic activity of RPR120844, a novel synthetic coagulation factor Xa (fXa) inhibitor (Ki = 7 nM), was assessed by its ability to inhibit thrombus formation in a damaged segment of the rabbit jugular vein. Intravenous dose-response studies were performed and thrombus mass (TM), activated partial thromboplastin time (APTT), prothrombin time (PT), inhibition of ex vivo fXa activity and plasma drug levels (PDL) were determined. TM, measured at the end of a 50 min infusion, was significantly reduced (p <0.05 vs saline-treated animals) by RPR120844 at 30 and 100 μg/kg/min. At doses of 10, 30 and 100 μg/kg/min, APTT was prolonged by 2.1, 4.2 and 6.1-fold, and PT was prolonged by 1.4, 2.2 and 3.5-fold, respectively. PDL were determined by measuring anti-fXa activity using an amidolytic assay. Peak PDL were 0.8 ± 0.3, 1.5 ± 0.9 and 2.4 ± 0.6 μM, respectively. The drug effect was reversible with APTT, PT and PDL returning toward pretreatment values 30 min after termination of treatment. The results suggest that RPR120844, or similar compounds, may provide an efficacious, yet easily reversible, means of inhibiting thrombus formation.


Blood ◽  
2011 ◽  
Vol 118 (14) ◽  
pp. 3942-3951 ◽  
Author(s):  
Joke Konings ◽  
José W. P. Govers-Riemslag ◽  
Helen Philippou ◽  
Nicola J. Mutch ◽  
Julian I. Borissoff ◽  
...  

Abstract Recent data indicate an important contribution of coagulation factor (F)XII to in vivo thrombus formation. Because fibrin structure plays a key role in clot stability and thrombosis, we hypothesized that FXII(a) interacts with fibrin(ogen) and thereby regulates clot structure and function. In plasma and purified system, we observed a dose-dependent increase in fibrin fiber density and decrease in turbidity, reflecting a denser structure, and a nonlinear increase in clot stiffness with FXIIa. In plasma, this increase was partly independent of thrombin generation, as shown in clots made in prothrombin-deficient plasma initiated with snake venom enzyme and in clots made from plasma deficient in FXII and prothrombin. Purified FXII and α-FXIIa, but not β-FXIIa, bound to purified fibrinogen and fibrin with nanomolar affinity. Immunostaining of human carotid artery thrombi showed that FXII colocalized with areas of dense fibrin deposition, providing evidence for the in vivo modulation of fibrin structure by FXIIa. These data demonstrate that FXIIa modulates fibrin clot structure independently of thrombin generation through direct binding of the N-terminus of FXIIa to fibrin(ogen). Modification of fibrin structure by FXIIa represents a novel physiologic role for the contact pathway that may contribute to the pathophysiology of thrombosis.


Blood ◽  
2012 ◽  
Vol 120 (22) ◽  
pp. 4296-4303 ◽  
Author(s):  
Thomas Renné ◽  
Alvin H. Schmaier ◽  
Katrin F. Nickel ◽  
Margareta Blombäck ◽  
Coen Maas

Abstract Coagulation factor XII (FXII, Hageman factor, EC = 3.4.21.38) is the zymogen of the serine protease, factor XIIa (FXIIa). FXII is converted to FXIIa through autoactivation induced by “contact” to charged surfaces. FXIIa is of crucial importance for fibrin formation in vitro, but deficiency in the protease is not associated with excessive bleeding. For decades, FXII was considered to have no function for coagulation in vivo. Our laboratory developed the first murine knockout model of FXII. Consistent with their human counterparts, FXII−/− mice have a normal hemostatic capacity. However, thrombus formation in FXII−/− mice is largely defective, and the animals are protected from experimental cerebral ischemia and pulmonary embolism. This murine model has created new interest in FXII because it raises the possibility for safe anticoagulation, which targets thrombosis without influence on hemostasis. We recently have identified platelet polyphosphate (an inorganic polymer) and mast cell heparin as in vivo FXII activators with implications on the initiation of thrombosis and edema during hypersensitivity reactions. Independent of its protease activity, FXII exerts mitogenic activity with implications for angiogenesis. The goal of this review is to summarize the in vivo functions of FXII, with special focus to its functions in thrombosis and vascular biology.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3271-3271
Author(s):  
Teresa M Brophy ◽  
Jasimuddin Ahamed ◽  
Barry S. Coller

Abstract Abstract 3271 Transforming growth factor β1 (TGF-β1) is a disulfide-bonded, 25 kD homodimeric protein produced by most cell types, including platelets, that functions as a cytokine in many physiologic and pathologic processes. Platelets contain 40–100 times more TGF-β1 than other cells and release it as an inactive large latent complex (LLC) comprised of TGF-β1 non-covalently associated with its latency-associated peptide (LAP), which is, in turn, disulfide-bonded to latent TGF-β binding protein 1 (LTBP-1). Thrombospondin-1 (TSP1), proteases, and reactive oxygen species have all been shown to activate TGF-β1 in vitro and a role for integrins in vivo has been inferred from studies of transgenic mice. Recently, we discovered that shear force can activate latent TGF-β1 released from platelets in vitro and that thiol-disulfide exchange contributes to shear-dependent TGF-β1 activation. A number of thiol isomerase enzymes that can catalyze thiol-disulfide exchange have been identified in platelets, including protein disulfide isomerase (PDI), ERp5, ERp57, ERp72, ERp44, ERp29, and TMX3. As shear-induced activation of TGF-β1 is partially thiol-dependent, we investigated if thiol isomerases can affect this process. Mastoparan is a non-thiol-containing wasp venom peptide known to inhibit the chaperone activity of PDI, ERp5, and perhaps other thiol isomerases. We recently showed that mastoparan, (INLKALAALAKKIL), inhibits stirring-induced TGF-β1 activation by more than 90% (100 μM; n=3, p=0.03), whereas no inhibition was observed with an inactive mastoparan-like control peptide (INLKAKAALAKKLL) at 100 μM (n=3, p=0.66). To identify the proteins that bind to mastoparan, either directly or indirectly, platelet releasates were chromatographed on a mastoparan affinity column prepared from N-hydroxysuccinimide Sepharose. Two control columns were employed: 1. unconjugated Sepharose, and 2. Sepharose conjugated with the mastoparan-like control peptide. Elution of bound proteins was achieved by increasing the NaCl concentration. Proteins identified by mass spectrometry as specifically binding to the mastoparan peptide column included LTBP-1, TGF-β1 precursor, clusterin, coagulation Factor V, multimerin-1, 14-3-3 protein zeta/delta, and α-actinin 4. These results were confirmed by immunoblotting. Furthermore, the thiol isomerases PDI, ERp5, ERp57, and ERp72 were all found to bind specifically to mastoparan as confirmed by immunoblotting. We conclude that mastoparan affinity chromatography identified a number of proteins in platelet releasates that may contribute to shear-induced TGF-β1 activation. Disclosures: Coller: Centocor/Accumetrics/Rockefeller University:.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4033-4033
Author(s):  
Carol D. Jones ◽  
Fernando Negro ◽  
Katherine Darnell ◽  
James L. Zehnder

Abstract The gene for coagulation Factor V (FV) is located on chromosome 1q23. FV deficiency shows an autosomal recessive mode of inheritance; heterozygotes are generally not clinically affected. The homozygous clinical phenotype occurs in approximately 1 per million individuals with variable severity of bleeding. Thus, genotype-phenotype correlations are likely to shed light on functionally important residues of FV. Here we describe a case of FV deficiency with a severe bleeding phenotype. The proband is a male infant from Argentina. His parents are unrelated. He was born healthy with no bleeding from the umbilical stump or other symptoms. He presented at eight months with a CNS hemorrhage, then suffered a second massive subdural bleed at nine months of age. Both episodes required surgical drainage and treatment with fresh frozen plasma He continues to receive prophylactic FFP infusions and has some residual neurologic impairment. The proband’s FV activity ranges from 2–14%. Two siblings are unaffected. His father’s FV activity is 50% and his mother’s is 70%. We performed DNA sequencing spanning the entire coding region of the proband’s FV gene and found two heterozygous mutations: a heterozygous single base pair deletion, del 2952T in exon 13, located in the B-domain of the FV protein, causing a frameshift mutation followed by a premature termination codon 3 amino acids downstream; and a novel 3-bp deletion in exon 10. This deletion is in-frame and results in the deletion of Y478. The del 2952T frameshift mutation was present in the father, while the del Y478 mutation was present in the mother. Y478 is in the A2 domain of FV and adjacent to another tyrosine, Y477. Evidence suggests that these tyrosine residues are important for co-factor function. Tyrosine residue sulfation has been shown to be required for full activity of the homologous co-factor, FVIII, as well as for hirudin. These sulfated tyrosines and surrounding acidic amino acids have been proposed to be important in interactions with the thrombin anion binding exosite; in the case of hirudin, sulfation of a carboxy-terminal tyrosine increases the affinity for thrombin 10-fold. The homologous tyrosines, Y718 and Y719 appear to be sulfated in FVIII. FV has been shown to be sulfated, but the precise location of the FV sulfation sites has not yet been determined. One of this patient’s FV alleles is nonfunctional due to a frameshift and a premature trancation of translation. With respect to the other allele, we hypothesize that, like FVIII, one or both of FV tyrosines 477 and 478 is sulfated, and that deletion of Y478 may result in disruption of FV co-factor function. In vitro mutagenesis and expression studies to characterize the functional consequences of the del Y478 and/or del Y477 are in progress.


Blood ◽  
2011 ◽  
Vol 118 (19) ◽  
pp. 5302-5311 ◽  
Author(s):  
Alexey S. Revenko ◽  
Dacao Gao ◽  
Jeff R. Crosby ◽  
Gourab Bhattacharjee ◽  
Chenguang Zhao ◽  
...  

AbstractRecent studies indicate that the plasma contact system plays an important role in thrombosis, despite being dispensable for hemostasis. For example, mice deficient in coagulation factor XII (fXII) are protected from arterial thrombosis and cerebral ischemia-reperfusion injury. We demonstrate that selective reduction of prekallikrein (PKK), another member of the contact system, using antisense oligonucleotide (ASO) technology results in an antithrombotic phenotype in mice. The effects of PKK deficiency were compared with those of fXII deficiency produced by specific ASO-mediated reduction of fXII. Mice with reduced PKK had ∼ 3-fold higher plasma levels of fXII, and reduced levels of fXIIa-serpin complexes, consistent with fXII being a substrate for activated PKK in vivo. PKK or fXII deficiency reduced thrombus formation in both arterial and venous thrombosis models, without an apparent effect on hemostasis. The amount of reduction of PKK and fXII required to produce an antithrombotic effect differed between venous and arterial models, suggesting that these factors may regulate thrombus formation by distinct mechanisms. Our results support the concept that fXII and PKK play important and perhaps nonredundant roles in pathogenic thrombus propagation, and highlight a novel, specific and safe pharmaceutical approach to target these contact system proteases.


Sign in / Sign up

Export Citation Format

Share Document