scholarly journals A novel conditioning-free hematopoietic stem cell transplantation model in zebrafish

2020 ◽  
Vol 4 (24) ◽  
pp. 6189-6198
Author(s):  
Ellen Fraint ◽  
María Feliz Norberto ◽  
Teresa V. Bowman

Abstract Transplantation is the most common assay for measuring the in vivo functionality of hematopoietic stem cells (HSCs). Although various HSC transplantation strategies have been developed in zebrafish, they are underutilized because of challenges related to immune matching and preconditioning toxicity. To circumvent these limitations, we developed a simple and robust transplantation model using HSC-deficient hosts. Homozygous runx1W84X mutants are devoid of definitive hematopoietic cells, including HSCs and adaptive immune cells; thus, they require no preconditioning regimen for transplantation. Marrow cell transplantation into runx1-mutant zebrafish 2 days after fertilization significantly improved their survival to adulthood and resulted in robust, multilineage, long-lasting, serially repopulating engraftment. Furthermore, we demonstrated that engraftment into runx1 homozygous mutants was significantly higher than into runx1 heterozygotes, demonstrating that the improved transplantation success is attributable to the empty HSC niche in mutants and not just the embryonic environment. Competitive transplantation of marrow cells into runx1 mutants revealed a stem cell frequency similar to that of murine marrow cells, which demonstrates the utility of this model for quantifying HSC function. The streamlined approach and robustness of this assay will help broaden its feasibility for future high-throughput transplantation experiments in zebrafish and will enable further novel discoveries in the biology of HSCs.

Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4136-4142 ◽  
Author(s):  
I Kawashima ◽  
ED Zanjani ◽  
G Almaida-Porada ◽  
AW Flake ◽  
H Zeng ◽  
...  

Using in utero transplantation into fetal sheep, we examined the capability of human bone marrow CD34+ cells fractionated based on Kit protein expression to provide long-term in vivo engraftment. Twelve hundred to 5,000 CD34+ Kit-, CD34+ Kit(low), and CD34+ Kit(high) cells were injected into a total of 14 preimmune fetal sheep recipients using the amniotic bubble technique. Six fetuses were killed in utero 1.5 months after bone marrow cell transplantation. Two fetuses receiving CD34+ Kit(low) cells showed signs of engraftment according to analysis of CD45+ cells in their bone marrow cells and karyotype studies of the colonies grown in methylcellulose culture. In contrast, two fetuses receiving CD34+ Kit(high) cells and two fetuses receiving CD34+ Kit- cells failed to show evidence of significant engraftment. Two fetuses were absorbed. A total of six fetuses receiving different cell populations were allowed to proceed to term, and the newborn sheep were serially examined for the presence of chimerism. Again, only the two sheep receiving CD34+ Kit(low) cells exhibited signs of engraftment upon serial examination. Earlier in studies of murine hematopoiesis, we have shown stage-specific changes in Kit expression by the progenitors. The studies of human cells reported here are in agreement with observations in mice, and indicate that human hematopoietic stem cells are enriched in the Kit(low) population.


Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3302-3309 ◽  
Author(s):  
Thomas H. Price ◽  
Raleigh A. Bowden ◽  
Michael Boeckh ◽  
Juergen Bux ◽  
Karen Nelson ◽  
...  

Abstract We examined the feasibility of a community blood bank granulocyte transfusion program utilizing community donors stimulated with a single-dose regimen of subcutaneous granulocyte colony-stimulating factor (G-CSF) plus oral dexamethasone. The recipients of these transfusions were neutropenic stem cell transplantation patients with severe bacterial or fungal infection. Nineteen patients received 165 transfusions (mean 8.6 transfusions/patient, range 1-25). Community donors provided 94% of the transfusions; relatives accounted for only 6% of the transfusions. Sixty percent of the community donors initially contacted agreed to participate, and 98% of these individuals indicated willingness to participate again. Transfusion of 81.9 ± 2.3 × 109 neutrophils (mean ± SD) resulted in a mean 1-hour posttransfusion neutrophil increment of 2.6 ± 2.6 × 103/μL and restored the peripheral neutrophil count to the normal range in 17 of the 19 patients. The buccal neutrophil response, a measure of the capacity of neutrophils to migrate to tissue sites in vivo, was restored to normal in most patients following the transfusion. Chills, fever, and arterial oxygen desaturation of ≥ 3% occurred in 7% of the transfusions, but these changes were not sufficient to limit therapy. Infection resolved in 8 of 11 patients with invasive bacterial infections or candidemia. These studies indicate that transfusion of neutrophils from donors stimulated with G-CSF plus dexamethasone can restore a severely neutropenic patient's blood neutrophil supply and neutrophil inflammation response. Further studies are needed to evaluate the clinical efficacy of this therapy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 64-64
Author(s):  
Tippi MacKenzie ◽  
Erin Jarvis ◽  
Amar Nijagal ◽  
Tom Le ◽  
Marta Wegorzewska ◽  
...  

Abstract Abstract 64 In utero hematopoietic stem cell transplantation (IUHSCTx) is a promising treatment strategy for many congenital hematopoietic disorders such as immunodeficiencies. However, clinical applications have been hampered by lack of engraftment, possibly secondary to a host immune response. This has been a conundrum in the field, since the fetus can also be tolerized to allogeneic cells in some circumstances. We hypothesized that it is the maternal immune response which limits engraftment of in utero transplanted cells. Methods: Fetal BALB/c mice at 14 days' gestation were transplanted with age-matched fetal liver (FL) cells (2.5 × 106 cells/fetus) from allogeneic C57B6 mice and levels of circulating donor cell chimerism were determined serially starting at 4 weeks after in utero transplantation. Rates of engraftment (number of chimeric pups/number of surviving pups) and levels of chimerism (donor CD45 cells/total CD45 cells) were compared to controls in which animals were transplanted with congenic cells (C57B6 (CD45.2) fetal hosts transplanted with C57B6 (CD45.1) FL). In order to determine the role of the maternal adaptive immune system, immunodeficient BALB/c.Rag−/− mothers (deficient in T and B cells) were bred to wild type BALB/c males, such that the fetuses (BALB/c.Rag+/−) would be immunocompetent. These fetuses were transplanted with C57B6 FL and rates of engraftment and levels of chimerism in these transplants were compared to those in wild type allogeneic transplants. In order to determine whether the maternal influence is caused by maternal lymphocytes trafficking into the fetus, C57B6 (CD45.2) females were bred to C57B6 (CD45.1) males, such that the fetal cells (CD45.1+/CD45.2+) could be distinguished from maternal cells (CD45.1−/CD45.2+). Fetal blood and tissues were examined for the presence of maternal cells by flow cytometry at various gestational ages. Results: The rate of engraftment after IUHSCTx in control animals transplanted with congenic cells was 14/16 (88%) and average levels of chimerism were 9.9±8.4%. In contrast, the rate of engraftment in wild-type BALB/c fetuses transplanted with allogeneic B6 cells was 11/25 (44%; p<0.05 compared to congenic), and levels of chimerism were 21±19 (p=NS), confirming there is an adaptive immune response to fetal stem cell transplantation. As expected, chimeric animals were tolerant to the donor strain by mixed lymphocyte reaction while injected, non-chimeric animals were sensitized. However, in the absence of a maternal adaptive immune system, rates of chimerism (in immunocompetent BALB/c.Rag+/− pups) increased to 100% (n=10, p<0.05 compared to wild type allogeneic) and levels of chimerism were significantly higher (44±18, p<0.05). Levels of chimerism in engrafted animals declined over time after allogeneic transplantation but not after congenic transplantation, indicating there is a second, late phase immune response to allogeneic cells. However, chimerism levels did not decline in the BALB/c.Rag+/− recipients, suggesting that the maternal immune system has long-lasting effects on the success of fetal transplantation, perhaps by priming the host immune system. In our analysis of maternal/fetal cellular trafficking, we detected maternal lymphocytes in the blood of midgestation fetuses (14±7% at E12.5–E14.5, n=9) which declined gradually and was undetectable after birth. Lineage analysis demonstrated that 45±15 % of maternal cells are Gr-1+ granulocytes and 21±15% are B cells. Trafficking of maternal cells into the fetus was increased following fetal manipulation (injection of PBS < injection of allogeneic HSC). Conclusions: There is an adaptive immune response which limits early engraftment after in utero transplantation of allogeneic cells and leads to a gradual decline in levels of chimerism in engrafted animals. However, in the selective absence of maternal T and B cells, all fetuses transplanted with allogeneic FL cells show long-term, multilineage engraftment and demonstrate donor-specific tolerance. These results indicate that the maternal immune system plays a significant role in the success of fetal HSC transplantation. Cellular trafficking between the mother and fetus may be a mechanism by which maternal lymphocytes encounter cells transplanted into the fetus. Our findings have clinical implications in that the success of IUHSCTx may be improved by harvesting cells from the mother or HLA-matching cells to the mother. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3972-3972 ◽  
Author(s):  
Matthias Staudinger ◽  
Christian Kellner ◽  
Matthias Peipp ◽  
Natalie Schub ◽  
Andreas Humpe ◽  
...  

Abstract Although the mortality of autologous stem cell transplantation in contrast to allogeneic is low, in AML patients the lack of immune surveillance as well as contamination of the transplant with residual leukemic stem cells (LSC) limits its use. Therefore, elimination of LSC by targeted therapy may represent a promising therapeutic approach. Recently, CD96 was identified as marker antigen on AML-LSC (Hosen et al., PNAS 104: 11008, 2007). Here, by addressing CD96 with magnetic cell sorting (MACS) or using antibody dependent cellular cytotoxicity (ADCC), new strategies for engineering autologous stem cell grafts or for in vivo targeting of residual AML stem cells are presented. To evaluate the efficacy of depletion of LSC by MACS technology, grafts containing hematopoietic stem cells were spiked with CD96 positive AML cells. Using biotinylated CD96 antibody TH111 raised in our laboratory in combination with anti-biotin-micro beads (Miltenyi Biotech, Bergisch Gladbach, Germany) up to a 1000-fold depletion of targeted cells was achieved. The viability, cell count and the potential of hematopoietic progenitor cells (HPC) to proliferate and differentiate were not affected by this procedure as documented by flow cytometry and colony forming assays. As residual LSC residing within the patient may also account for AML relapse after high-dose chemotherapy and subsequent SCT, eradication of AML stem cells in vivo is desirable. To target CD96+ AML-LSC by ADCC, chimeric antibodies containing wild type or affinity maturated variable regions in combination with an optimized human IgG1Fc were generated by recombinant DNA technologies. Both recombinant antibodies were expressed in Hek 293 cells enriched to homogeneity by affinity chromatography and analyzed for their functional properties. As shown by flow cytometry, the antigen binding affinity of the maturated antibody was enhanced (EC50 0.6 μg/ml vs. 2 μg/ml). Moreover, as analyzed in standard ADCC assays, NK cell mediated lytic properties against CD96-positive target cells were elevated (maximum lysis: 52%) using the affinity maturated chimeric CD96 antibody (EC50: 0.02 μg/ml vs. 0.15 μg/ml). Thus, this CD96 purging strategy avoids unwanted transplantation of AML-LSC and may help to revitalize autologous stem cell transplantation in this indication. Although, specific side effects by CD96 application will have to be considered, this may allow for an additional therapeutic avenue to eliminate in vivo residual AML-LSC in autologous as well as in allogeneic situations. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3302-3309
Author(s):  
Thomas H. Price ◽  
Raleigh A. Bowden ◽  
Michael Boeckh ◽  
Juergen Bux ◽  
Karen Nelson ◽  
...  

We examined the feasibility of a community blood bank granulocyte transfusion program utilizing community donors stimulated with a single-dose regimen of subcutaneous granulocyte colony-stimulating factor (G-CSF) plus oral dexamethasone. The recipients of these transfusions were neutropenic stem cell transplantation patients with severe bacterial or fungal infection. Nineteen patients received 165 transfusions (mean 8.6 transfusions/patient, range 1-25). Community donors provided 94% of the transfusions; relatives accounted for only 6% of the transfusions. Sixty percent of the community donors initially contacted agreed to participate, and 98% of these individuals indicated willingness to participate again. Transfusion of 81.9 ± 2.3 × 109 neutrophils (mean ± SD) resulted in a mean 1-hour posttransfusion neutrophil increment of 2.6 ± 2.6 × 103/μL and restored the peripheral neutrophil count to the normal range in 17 of the 19 patients. The buccal neutrophil response, a measure of the capacity of neutrophils to migrate to tissue sites in vivo, was restored to normal in most patients following the transfusion. Chills, fever, and arterial oxygen desaturation of ≥ 3% occurred in 7% of the transfusions, but these changes were not sufficient to limit therapy. Infection resolved in 8 of 11 patients with invasive bacterial infections or candidemia. These studies indicate that transfusion of neutrophils from donors stimulated with G-CSF plus dexamethasone can restore a severely neutropenic patient's blood neutrophil supply and neutrophil inflammation response. Further studies are needed to evaluate the clinical efficacy of this therapy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 20-20
Author(s):  
James Bartram ◽  
Baobao (Annie) Song ◽  
Juying Xu ◽  
Nathan Salomonis ◽  
H. Leighton Grimes ◽  
...  

Abstract Hematopoietic stem cells are endowed with high regenerative potential but their actual self-renewal capacity is limited. Studies using the H2B-retention labeling system show HSC functional decline at each round of division (Qiu, Stem Cell Reports 2014). We have shown that mitochondria drive HSC functional decline with division history after transplantation (Cell Stem Cell 2020). Here we examined the link between mitochondrial metabolism, in vivo division at steady state, and HSC functions using the GFP label-Histone 2B (GFP-H2B) mouse model driven by a doxycycline-inducible promoter. Five months after doxycycline removal, mitochondrial membrane potential (MMP) was examined using TMRE in HSC with varying GFP intensity. HSC were separated into an H2B-labeled retention population and an H2B-labeled population. Interestingly, within the H2B-labeled retention population, HSC could be further subdivided into GFP high, medium, and low. MMP increased in a stepwise fashion with GFP dilution in HSC. We noted the presence of 2 TMRE peaks within each GFP high and medium populations leading to 5 populations: GFP-high;MMP-low (G1), GFP-high;MMP-high (G2), GFP-medium;MMP-low (G3), GFP-medium;MMP-high (G4), GFP-low;MMP-high (G5). We examined the repopulation activity of each population in a serial competitive transplant assay. G1 and G2 maintained higher peripheral blood chimerism up to 24 weeks post-transplant than G3 and G4. G5 did not engraft at all. However, only G1 reconstituted high frequency of HSC in primary recipients. In secondary recipients, G1, G2, G3 but not G4 gave rise to positive engraftment. Interestingly, G1 and G2 grafts showed myeloid/lymphoid balanced engraftment whereas the G3 graft was myeloid-bias, suggesting that myeloid skewing can be acquired upon HSC division. We further examined lineage fate maps of bone marrow cells derived from G1 or G3 population in vivo, using single cell RNA sequencing, 10X genomics. Surprisingly, G3-derived bone marrow cells displayed a distinct myeloid cell trajectory from G1-derived bone marrow cells, in which G3 gave rise to increased immature neutrophils but fewer myeloid precursors. Remarkably, each lineage population derived from G3 donor cells had different gene expression signatures than those derived from G1 donor cells. Therefore, HSC that have divided in vivo in the same bone marrow microenvironment are intrinsically and molecularly different such that not only do they exhibit lineage potential differences but they also produce progeny that are transcriptionally different. These findings imply that cellular division rewires HSC and that this rewiring is passed down to their fully differentiated progeny. When G1 and G3 single HSC were cultured in-vitro, G1 had a slower entry into cell-cycle which has been associated with increased stemness. Additionally, when single HSC from G1 and G3 were assessed for their multipotency in a lineage differentiation assay, G1 HSC had a higher propensity to produce all four myeloid lineages (megakaryocytes, neutrophils, macrophages, and erythroid), further supporting increased stemness in G1 compared to G3 HSC. Finally, HSC from G1, G2, G3 and G4 populations carried mitochondria that were morphologically different, and express distinct levels of Sca-1, CD34 and EPCR, with Sca-1 high, CD34-, EPCR+ cells more enriched in G1. In summary, this study suggests that HSC transition into distinct metabolic and functional states with division history that may contribute to HSC diversity and functional heterogeneity. It also suggests the existence of a cell-autonomous mechanism that confers HSC divisional memory to actively drive HSC functional heterogeneity and aging. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document