scholarly journals Adoptive T-cell Therapy for Hodgkin Lymphoma

Author(s):  
Carrie Ho ◽  
Marco Ruella ◽  
Bruce L. Levine ◽  
Jakub Svoboda

While CAR T-cell therapy is FDA-approved for B-cell non-Hodgkin lymphomas, the development of adoptive immunotherapy for the treatment of classic Hodgkin lymphoma (cHL) has not accelerated at a similar pace. Adoptive T-cell therapy with EBV-specific cytotoxic T lymphocytes and CD30 CAR T cells have demonstrated significant clinical responses in early clinical trials of patients with cHL. Additionally, CD19 and CD123 CAR T cells that target the immunosuppressive tumor microenvironment in cHL have also been investigated. Here we discuss the landscape of clinical trials of adoptive immunotherapy for patients with cHL with a view towards current challenges and novel strategies to improve the development of CAR T-cell therapy for cHL.

Author(s):  
Manal Mohamed Elsayed Ahmed

Purpose: The aim is to review the current advances in designing safer and more efficient CAR-T cells and discuss the future research possibilities for the treatment of both hematological malignancies and solid tumors. Study Design: An extensive review was carried out on the basic structure of CARS, current advances to design safer and more efficient CAR-T cells, and future research possibilities for the treatment of both hematological malignancies and solid tumors. Results: Encouragement of chimeric antigen receptor-T (CAR-T) cell therapy as one of adoptive immunotherapy is increasingly important in recent years. Its preparation is based on the genetic modification of individual T cells. The innovation of the functional intracellular signaling domain is a critical part of the genetically modified T cells and requires a long journey of development that has resulted in several improvements in the safety and effectiveness of CAR-T cells. CAR-T cell therapy can be modified rapidly and has great and strong application potential according to a large number of global clinical trials. This article briefly describes the basic structure and design of CARs and discusses current trends in the development of safer and more efficient CAR-T cells for the treatment of both hematological and solid malignancies and looks forward to future research possibilities. Conclusion: It is concluded that conclude that the prospect of this technology lies in CAR-T cell engineering which can overcome aggressive TMEs and recruiting an endogenous tumor response. The final task for researchers in this field is to carry out clinical trials and secure the funding needed to complete their clinical trials. This immunotherapy continues to progress and more records of successful malignancy eradication occur.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5629-5629 ◽  
Author(s):  
Eider F Moreno Cortes ◽  
Caleb K Stein ◽  
Paula A Lengerke Diaz ◽  
Cesar A Ramirez-Segura ◽  
Januario E. Castro

Background: Chimeric Antigen Receptor (CAR) T cell therapy is a promising cancer immunotherapy that is growing exponentially. The doubling time of medical knowledge in 2010 was 3.5 years, and the projection for 2020 is just 73 days. In the last five years, the number of PubMed publications on cancer applications of CAR T cells has tripled. Therefore, to remain updated in the field represents a challenge for patients, care providers and researchers. In this review we provide a focused summary of the currently ongoing clinical trials, with a comprehensive overview of advances in CAR T cell therapy, beyond CD19, emphasizing on antigenic targets, development phases, and leading sponsor pharmaceutical companies. Methods: We retrieved the available data from the national registry of clinical trials (clinicaltrials.gov) using the following keywords: "CAR T cell", "CAR T cell and cancer", "chimeric antigen receptor", "CAR T AND tumor antigen", 'CAR T cell antigens", "Tumor antigens targeted by CAR T cells", "engineered T cells", "modified T cell", "CAR T cells in Cancer", "CAR T cell therapy", "CAR T cell therapy AND Cancer" until December 31, 2018 and manually excluded the trials unrelated to CAR T-cell therapies on cancer, by reviewing the detailed information provided on the website as well as preliminary data published. Results: The analysis included 271 clinical trials posted on the clinicaltrials.gov website from the United States by the cut-off date. For efficacy analysis, we retrieved information from 52 trials, by NCT number on a PubMed search. The majority of CAR T clinical research is focused on hematological cancer (57%), followed by CNS 8%, GI 6%, Skin 5%, Genitourinary 4%, Breast 4%, Gynecologic 4%, Respiratory 3%, Sarcoma 2%, Mesothelioma 2% and others 5%. The most used target in CAR T cell therapy and the leaders in phase 3 trials are CD19 (42%) and BCMA (12%), followed by CD20, NY-ESO-1, Mesothelin, HER2, GD2, MAGE-A3 and CD30. An essential step in CAR T cell therapy development is the selection of the right antigen/target. Here, we provide an overview of the clinically relevant targets that are actively being using by clinical trials in the United States. For example, CD19 appears to be a leading target regarding CAR T cell therapy on cancer with 116 trials (42% of total CAR T cells trials) on going just in the United States with a significant increment in the previous years. Similarly, with BCMA is one of the targets with more phase 3 trials (Figure 1) with promising results on patients with Multiple Myeloma with and the objective response of 85%, CR 45%, and PFS of 11.8 months. Second-generation CARs with either CD28 or 4-1BB as costimulatory signaling domain are preferred, with 4-1BB being the most commonly chosen. Conclusions: Our findings show growing trends in the development of CAR T cell-based therapies, combination and possible retargeting therapies in the future for solid tumor and hematologic malignances; taking into account the amount of important information and the complexity of the database, we have developed this analysis to understand how to generate in the future a friendly platform for researchers and patients to have an detailed overview of the clinical trials in cellular therapies Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii73-ii73
Author(s):  
Stephanie Yahn ◽  
Sophia Zhang ◽  
Lance Peter ◽  
Mei-I Chung ◽  
Austin Gutierrez ◽  
...  

Abstract Recent advances in immunotherapy, particularly chimeric antigen receptor (CAR)-engineered T cell therapy, have shown promise for the treatment of many tumor types including progressive recurrent glioblastoma (GBM). While early phase clinical trials have illuminated the potential for CAR T cell therapy to effectively treat GBM, they have also highlighted the unique challenges regarding the efficacy and safety of immunotherapy for brain tumors, and many patients continue to progress during therapy. We seek to overcome these challenges and ultimately extend the time of survival for patients diagnosed with GBM by investigating the immune- and tumor-mediated mechanisms driving variation in response to CAR T cell therapy. We generated the first multi-omics time-series dataset of CAR T cells, endogenous immune cells, and tumor cells from 59 GBM patients treated with CAR T cell therapy. Using single cell RNA-sequencing and simultaneous quantification of nearly 200 cell surface proteins, we comprehensively profiled the cellular phenotypes and signaling pathways within tumor and circulating immune cells that are associated with treatment response. The combination of mRNA and protein expression allowed us to resolve cell states beyond what either modality was capable of alone. Additionally, we found differentially expressed genes and proteins between tumor biopsies collected before and after CAR T cell therapy as well as differential expression between pre-infusion CAR T cells and those identified within the tumor following infusion. By evaluating the CAR T cell phenotypes prior to and during treatment we sought to address the outstanding question of how intrinsic variability impacts the activity and persistence of CAR T cells and to determine the phenotypes that confer the greatest therapeutic benefit for patients with GBM. Our results have direct implications for precision medicine and future clinical trials investigating the use of CAR T cell therapy for GBM as well as other solid tumors.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Laura Castelletti ◽  
Dannel Yeo ◽  
Nico van Zandwijk ◽  
John E. J. Rasko

AbstractMalignant mesothelioma (MM) is a treatment-resistant tumor originating in the mesothelial lining of the pleura or the abdominal cavity with very limited treatment options. More effective therapeutic approaches are urgently needed to improve the poor prognosis of MM patients. Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a novel potential treatment for this incurable solid tumor. The tumor-associated antigen mesothelin (MSLN) is an attractive target for cell therapy in MM, as this antigen is expressed at high levels in the diseased pleura or peritoneum in the majority of MM patients and not (or very modestly) present in healthy tissues. Clinical trials using anti-MSLN CAR T cells in MM have shown that this potential therapeutic is relatively safe. However, efficacy remains modest, likely due to the MM tumor microenvironment (TME), which creates strong immunosuppressive conditions and thus reduces anti-MSLN CAR T cell tumor infiltration, efficacy and persistence. Various approaches to overcome these challenges are reviewed here. They include local (intratumoral) delivery of anti-MSLN CAR T cells, improved CAR design and co-stimulation, and measures to avoid T cell exhaustion. Combination therapies with checkpoint inhibitors as well as oncolytic viruses are also discussed. Preclinical studies have confirmed that increased efficacy of anti-MSLN CAR T cells is within reach and offer hope that this form of cellular immunotherapy may soon improve the prognosis of MM patients.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1229
Author(s):  
Ali Hosseini Rad S. M. ◽  
Joshua Colin Halpin ◽  
Mojtaba Mollaei ◽  
Samuel W. J. Smith Bell ◽  
Nattiya Hirankarn ◽  
...  

Chimeric antigen receptor (CAR) T-cell therapy has revolutionized adoptive cell therapy with impressive therapeutic outcomes of >80% complete remission (CR) rates in some haematological malignancies. Despite this, CAR T cell therapy for the treatment of solid tumours has invariably been unsuccessful in the clinic. Immunosuppressive factors and metabolic stresses in the tumour microenvironment (TME) result in the dysfunction and exhaustion of CAR T cells. A growing body of evidence demonstrates the importance of the mitochondrial and metabolic state of CAR T cells prior to infusion into patients. The different T cell subtypes utilise distinct metabolic pathways to fulfil their energy demands associated with their function. The reprogramming of CAR T cell metabolism is a viable approach to manufacture CAR T cells with superior antitumour functions and increased longevity, whilst also facilitating their adaptation to the nutrient restricted TME. This review discusses the mitochondrial and metabolic state of T cells, and describes the potential of the latest metabolic interventions to maximise CAR T cell efficacy for solid tumours.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi102-vi103
Author(s):  
Tomás A Martins ◽  
Marie-Françoise Ritz ◽  
Tala Shekarian ◽  
Philip Schmassmann ◽  
Deniz Kaymak ◽  
...  

Abstract The GBM immune tumor microenvironment mainly consists of protumoral glioma-associated microglia and macrophages (GAMs). We have previously shown that blockade of CD47, a ‘don't eat me’-signal overexpressed by GBM cells, rescued GAMs' phagocytic function in mice. However, monotherapy with CD47 blockade has been ineffective in treating human solid tumors to date. Thus, we propose a combinatorial approach of local CAR T cell therapy with paracrine GAM modulation for a synergistic elimination of GBM. We generated humanized EGFRvIII CAR T-cells by lentiviral transduction of healthy donor human T-cells and engineered them to constitutively release a soluble SIRPγ-related protein (SGRP) with high affinity towards CD47. Tumor viability and CAR T-cell proliferation were assessed by timelapse imaging analysis in co-cultures with endogenous EGFRvIII-expressing BS153 cells. Tumor-induced CAR T-cell activation and degranulation were confirmed by flow cytometry. CAR T-cell secretomes were analyzed by liquid chromatography-mass spectrometry. Immunocompromised mice were orthotopically implanted with EGFRvIII+ BS153 cells and treated intratumorally with a single CAR T-cell injection. EGFRvIII and EGFRvIII-SGRP CAR T-cells killed tumor cells in a dose-dependent manner (72h-timepoint; complete cytotoxicity at effector-target ratio 1:1) compared to CD19 controls. CAR T-cells proliferated and specifically co-expressed CD25 and CD107a in the presence of tumor antigen (24h-timepoint; EGFRvIII: 59.3±3.00%, EGFRvIII-SGRP: 52.6±1.42%, CD19: 0.1±0.07%). Differential expression analysis of CAR T-cell secretomes identified SGRP from EGFRvIII-SGRP CAR T-cell supernatants (-Log10qValue/Log2fold-change= 3.84/6.15). Consistent with studies of systemic EGFRvIII CAR T-cell therapy, our data suggest that intratumoral EGFRvIII CAR T-cells were insufficient to eliminate BS153 tumors with homogeneous EGFRvIII expression in mice (Overall survival; EGFRvIII-treated: 20%, CD19-treated: 0%, n= 5 per group). Our current work focuses on the functional characterization of SGRP binding, SGRP-mediated phagocytosis, and on the development of a translational preclinical model of heterogeneous EGFRvIII expression to investigate an additive effect of CAR T-cell therapy and GAM modulation.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A133-A133
Author(s):  
Cheng-Fu Kuo ◽  
Yi-Chiu Kuo ◽  
Miso Park ◽  
Zhen Tong ◽  
Brenda Aguilar ◽  
...  

BackgroundMeditope is a small cyclic peptide that was identified to bind to cetuximab within the Fab region. The meditope binding site can be grafted onto any Fab framework, creating a platform to uniquely and specifically target monoclonal antibodies. Here we demonstrate that the meditope binding site can be grafted onto chimeric antigen receptors (CARs) and utilized to regulate and extend CAR T cell function. We demonstrate that the platform can be used to overcome key barriers to CAR T cell therapy, including T cell exhaustion and antigen escape.MethodsMeditope-enabled CARs (meCARs) were generated by amino acid substitutions to create binding sites for meditope peptide (meP) within the Fab tumor targeting domain of the CAR. meCAR expression was validated by anti-Fc FITC or meP-Alexa 647 probes. In vitro and in vivo assays were performed and compared to standard scFv CAR T cells. For meCAR T cell proliferation and dual-targeting assays, the meditope peptide (meP) was conjugated to recombinant human IL15 fused to the CD215 sushi domain (meP-IL15:sushi) and anti-CD20 monoclonal antibody rituximab (meP-rituximab).ResultsWe generated meCAR T cells targeting HER2, CD19 and HER1/3 and demonstrate the selective specific binding of the meditope peptide along with potent meCAR T cell effector function. We next demonstrated the utility of a meP-IL15:sushi for enhancing meCAR T cell proliferation in vitro and in vivo. Proliferation and persistence of meCAR T cells was dose dependent, establishing the ability to regulate CAR T cell expansion using the meditope platform. We also demonstrate the ability to redirect meCAR T cells tumor killing using meP-antibody adaptors. As proof-of-concept, meHER2-CAR T cells were redirected to target CD20+ Raji tumors, establishing the potential of the meditope platform to alter the CAR specificity and overcome tumor heterogeneity.ConclusionsOur studies show the utility of the meCAR platform for overcoming key challenges for CAR T cell therapy by specifically regulating CAR T cell functionality. Specifically, the meP-IL15:sushi enhanced meCAR T cell persistence and proliferation following adoptive transfer in vivo and protects against T cell exhaustion. Further, meP-ritiuximab can redirect meCAR T cells to target CD20-tumors, showing the versatility of this platform to address the tumor antigen escape variants. Future studies are focused on conferring additional ‘add-on’ functionalities to meCAR T cells to potentiate the therapeutic effectiveness of CAR T cell therapy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-6
Author(s):  
Xian Zhang ◽  
Junfang Yang ◽  
Wenqian Li ◽  
Gailing Zhang ◽  
Yunchao Su ◽  
...  

Backgrounds As CAR T-cell therapy is a highly personalized therapy, process of generating autologous CAR-T cells for each patient is complex and can still be problematic, particularly for heavily pre-treated patients and patients with significant leukemia burden. Here, we analyzed the feasibility and efficacy in 37 patients with refractory/relapsed (R/R) B-ALL who received CAR T-cells derived from related donors. Patients and Methods From April 2017 to May 2020, 37 R/R B-ALL patients with a median age of 19 years (3-61 years), were treated with second-generation CD19 CAR-T cells derived from donors. The data was aggregated from three clinical trials (www.clinicaltrials.gov NCT03173417; NCT02546739; and www.chictr.org.cn ChiCTR-ONC-17012829). Of the 37 patients, 28 were relapsed following allogenic hematopoietic stem cell transplant (allo-HSCT) and whose lymphocytes were collected from their transplant donors (3 HLA matched sibling and 25 haploidentical). For the remaining 9 patients without prior transplant, the lymphocytes were collected from HLA identical sibling donors (n=5) or haploidentical donors (n=4) because CAR-T cells manufacture from patient samples either failed (n=5) or blasts in peripheral blood were too high (>40%) to collect quality T-cells. The median CAR-T cell dose infused was 3×105/kg (1-30×105/kg). Results For the 28 patients who relapsed after prior allo-HSCT, 27 (96.4%) achieved CR within 30 days post CAR T-cell infusion, of which 25 (89.3%) were minimal residual disease (MRD) negative. Within one month following CAR T-cell therapy, graft-versus-host disease (GVHD) occurred in 3 patients including 1 with rash and 2 with diarrhea. A total of 19 of the 28 (67.9%) patients had cytokine release syndrome (CRS), including two patients (7.1%) with Grade 3-4 CRS. Four patients had CAR T-cell related neurotoxicity including 3 with Grade 3-4 events. With a medium follow up of 103 days (1-669days), the median overall survival (OS) was 169 days (1-668 days), and the median leukemia-free survival (LFS) was 158 days (1-438 days). After CAR T-cell therapy, 15 patients bridged into a second allo-HSCT and one of 15 patients (6.7%) relapsed following transplant, and two died from infection. There were 11 patients that did not receive a second transplantation, of which three patients (27.3%) relapsed, and four parents died (one due to relapse, one from arrhythmia and two from GVHD/infection). Two patients were lost to follow-up. The remaining nine patients had no prior transplantation. At the time of T-cell collection, the median bone marrow blasts were 90% (range: 18.5%-98.5%), and the median peripheral blood blasts were 10% (range: 0-70%). CR rate within 30 days post CAR-T was 44.4% (4/9 cases). Six patients developed CRS, including four with Grade 3 CRS. Only one patient had Grade 3 neurotoxicity. No GVHD occurred following CAR T-cell therapy. Among the nine patients, five were treated with CAR T-cells derived from HLA-identical sibling donors and three of those five patients achieved CR. One patient who achieved a CR died from disseminated intravascular coagulation (DIC) on day 16. Two patients who achieved a CR bridged into allo-HSCT, including one patient who relapsed and died. One of two patients who did not response to CAR T-cell therapy died from leukemia. Four of the nine patients were treated with CAR T-cells derived from haploidentical related donors. One of the four cases achieved a CR but died from infection on day 90. The other three patients who had no response to CAR T-cell therapy died from disease progression within 3 months (7-90 days). Altogether, seven of the nine patients died with a median time of 19 days (7-505 days). Conclusions We find that manufacturing CD19+ CAR-T cells derived from donors is feasible. For patients who relapse following allo-HSCT, the transplant donor derived CAR-T cells are safe and effective with a CR rate as high as 96.4%. If a patient did not have GVHD prior to CAR T-cell therapy, the incidence of GVHD following CAR T-cell was low. Among patients without a history of transplantation, an inability to collect autologous lymphocytes signaled that the patient's condition had already reached a very advanced stage. However, CAR T-cells derived from HLA identical siblings can still be considered in our experience, no GVHD occurred in these patients. But the efficacy of CAR T-cells from haploidentical donors was very poor. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 39-40
Author(s):  
Aimee C Talleur ◽  
Renee M. Madden ◽  
Amr Qudeimat ◽  
Ewelina Mamcarz ◽  
Akshay Sharma ◽  
...  

CD19-CAR T-cell therapy has shown remarkable efficacy in pediatric patients with relapsed and/or refractory B-cell acute lymphoblastic leukemia (r/r ALL). Despite high short-term remission rates, many responses are not durable and the best management of patients who achieve a complete response (CR) post-CAR T-cell therapy remains controversial. In particular, it is unclear if these patients should be observed or proceed to consolidative allogeneic hematopoietic cell transplantation (HCT). To address this question, we reviewed the clinical course of all patients (n=22) who received either an investigational CAR T-cell product (Phase I study: SJCAR19 [NCT03573700]; n=12) or tisagenlecleucel (n=10) at our institution. The investigational CD19-CAR T cells were generated by a standard cGMP-compliant procedure using a lentiviral vector encoding a 2nd generation CD19-CAR with a FMC63-based CD19 binding domain, CD8a stalk and transmembrane domain, and 41BB.ζ signaling domain. Patients received therapy between 8/2018 and 3/2020. All products met manufacturing release specifications. Within the entire cohort, median age at time of infusion was 12.3 years old (range: 1.8-23.5) and median pre-infusion marrow burden using flow-cytometry minimal residual disease (MRD) testing was 6.8% (range: 0.003-100%; 1 patient detectable by next-generation sequencing [NGS] only). All patients received lymphodepleting chemotherapy (fludarabine, 25mg/m2 daily x3, and cyclophosphamide, 900mg/m2 daily x1), followed by a single infusion of CAR T-cells. Phase I product dosing included 1x106 CAR+ T-cells/kg (n=6) or 3x106 CAR+ T-cells/kg (n=6). Therapy was well tolerated, with a low incidence of cytokine release syndrome (any grade: n=10; Grade 3-4: n=4) and neurotoxicity (any grade: n=8; Grade 3-4: n=3). At 4-weeks post-infusion, 15/22 (68.2%) patients achieved a CR in the marrow, of which 13 were MRDneg (MRDneg defined as no detectable leukemia by flow-cytometry, RT-PCR and/or NGS, when available). Among the 2 MRDpos patients, 1 (detectable by NGS only) relapsed 50 days after CAR T-cell infusion and 1 died secondary to invasive fungal infection 35 days after infusion. Within the MRDneg cohort, 6/13 patients proceeded to allogeneic HCT while in MRDneg/CR (time to HCT, range: 1.8-2.9 months post-CAR T-cell infusion). All 6 HCT recipients remain in remission with a median length of follow-up post-HCT of 238.5 days (range 19-441). In contrast, only 1 (14.3%) patient out of 7 MRDneg/CR patients who did not receive allogeneic HCT, remains in remission with a follow up of greater 1 year post-CAR T-cell infusion (HCT vs. no HCT: p<0.01). The remaining 6 patients developed recurrent detectable leukemia within 2 to 9 months post-CAR T-cell infusion (1 patient detectable by NGS only). Notably, recurring leukemia remained CD19+ in 4 of 5 evaluable patients. All 4 patients with CD19+ relapse received a 2nd CAR T-cell infusion (one in combination with pembrolizumab) and 2 achieved MRDneg/CR. There were no significant differences in outcome between SJCAR19 study participants and patients who received tisagenlecleucel. With a median follow up of one year, the 12 month event free survival (EFS) of all 22 patients is 25% (median EFS: 3.5 months) and the 12 month overall survival (OS) 70% (median OS not yet reached). In conclusion, infusion of investigational and FDA-approved autologous CD19-CAR T cells induced high CR rates in pediatric patients with r/r ALL. However, our current experience shows that sustained remission without consolidative allogeneic HCT is not seen in most patients. Our single center experience highlights not only the need to explore maintenance therapies other than HCT for MRDneg/CR patients, but also the need to improve the in vivo persistence of currently available CD19-CAR T-cell products. Disclosures Sharma: Spotlight Therapeutics: Consultancy; Magenta Therapeutics: Other: Research Collaboration; CRISPR Therapeutics, Vertex Pharmaceuticals, Novartis: Other: Clinical Trial PI. Velasquez:St. Jude: Patents & Royalties; Rally! Foundation: Membership on an entity's Board of Directors or advisory committees. Gottschalk:Patents and patent applications in the fields of T-cell & Gene therapy for cancer: Patents & Royalties; TESSA Therapeutics: Other: research collaboration; Inmatics and Tidal: Membership on an entity's Board of Directors or advisory committees; Merck and ViraCyte: Consultancy.


Author(s):  
Ya.Yu. Kiseleva ◽  
A.M. Shishkin ◽  
A.V. Ivanov ◽  
T.M. Kulinich ◽  
V.K. Bozhenko

Adoptive immunotherapy that makes use of genetically modified autologous T cells carrying a chimeric antigen receptor (CAR) with desired specificity is a promising approach to the treatment of advanced or relapsed solid tumors. However, there are a number of challenges facing the CAR T-cell therapy, including the ability of the tumor to silence the expression of target antigens in response to the selective pressure exerted by therapy and the dampening of the functional activity of CAR T cells by the immunosuppressive tumor microenvironment. This review discusses the existing gene-engineering approaches to the modification of CAR T-cell design for 1) creating universal “switchable” synthetic receptors capable of attacking a variety of target antigens; 2) enhancing the functional activity of CAR T cells in the immunosuppressive microenvironment of the tumor by silencing the expression of inhibiting receptors or by stimulating production of cytokines.


Sign in / Sign up

Export Citation Format

Share Document