scholarly journals Chronic hypoxia increases rat diaphragm muscle endurance and sodium-potassium ATPase pump content

2010 ◽  
Vol 37 (6) ◽  
pp. 1474-1481 ◽  
Author(s):  
C. McMorrow ◽  
A. Fredsted ◽  
J. Carberry ◽  
R. A. O'Connell ◽  
A. Bradford ◽  
...  
2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Ken D O'Halloran ◽  
Gordon S Mitchell ◽  
Aidan Bradford ◽  
Jayne Carberry

2020 ◽  
Vol 319 (2) ◽  
pp. R148-R155
Author(s):  
Elie Farhat ◽  
Maiah E. M. Devereaux ◽  
Matthew E. Pamenter ◽  
Jean-Michel Weber

Naked mole-rats (NMRs) are mammalian champions of hypoxia tolerance that enter metabolic suppression to survive in low oxygen environments. Common physiological mechanisms used by animals to suppress metabolic rate include downregulating energy metabolism (ATP supply) as well as ion pumps (primary cellular ATP consumers). A recent goldfish study demonstrated that remodeling of membrane lipids may mediate these responses, but it is unknown if NMR employs the same strategies; therefore, we aimed to test the hypotheses that these fossorial mammals 1) downregulate the activity of key enzymes of glycolysis, tricarboxylic acid (TCA) cycle, and β-oxidation, 2) inhibit sodium-potassium-ATPase, and 3) alter membrane lipids in response to chronic hypoxia. We found that NMRs exposed to 11% oxygen for 4 wk had a lower metabolic rate by 34%. This suppression occurs concurrently with tissue-specific 25–99% decreases in metabolic enzymes activities, a 77% decrease in brain sodium/potassium-ATPase activity, and widespread changes in membrane cholesterol abundance. By reducing glycolytic and β-oxidation fluxes, NMRs decrease the supply of acetyl-CoA to the TCA cycle. By contrast, there is a 94% upregulation of citrate synthase in the heart, possibly to support circulation and thus oxygen supply to other organs. Taken together, these responses may reflect a coordinated physiological response to hypoxia, but a clear functional link between changes in membrane composition and enzyme activities could not be established. Nevertheless, this is the first demonstration that hypometabolic NMRs alter the lipid composition of their membranes in response to chronic in vivo exposure to hypoxia.


2020 ◽  
Vol 17 (4) ◽  
pp. 510-517
Author(s):  
Santiago Ortega-Gutierrez ◽  
Brandy Jones ◽  
Alan Mendez-Ruiz ◽  
Pankhil Shah ◽  
Michel T. Torbey

Background: Hypoxic-ischemic encephalopathy (HIE) is a major cause of pediatric and adult mortality and morbidity. Unfortunately, to date, no effective treatment has been identified. In the striatum, neuronal injury is analogous to the cellular mechanism of necrosis observed during NMethyl- D-Aspartate (NMDA) excitotoxicity. Adenosine acts as a neuromodulator in the central nervous system, the role of which relies mostly on controlling excitatory glutamatergic synapses. Objective: To examine the effect of pretreatment of SCH58261, an adenosine 2A (A2A) receptor antagonist and modulator of NMDA receptor function, following hypoxic-ischemia (HI) on sodium- potassium ATPase (Na+, K+-ATPase) activity and oxidative stress. Methods: Piglets (4-7 days old) were subjected to 30 min hypoxia and 7 min of airway occlusion producing asphyxic cardiac arrest. Groups were divided into four categories: HI samples were divided into HI-vehicle group (n = 5) and HI-A2A group (n = 5). Sham controls were divided into Sham vehicle (n = 5) and Sham A2A (n = 5) groups. Vehicle groups were pretreated with 0.9% saline, whereas A2A animals were pretreated with SCH58261 10 min prior to intervention. Striatum samples were collected 3 h post-arrest. Sodium-potassium ATPase (Na+, K+-ATPase) activity, malondialdehyde (MDA) + 4-hydroxyalkenals (4-HDA) and glutathione (GSH) levels were compared. Results: Pretreatment with SCH58261 significantly attenuated the decrease in Na+, K+-ATPase, decreased MDA+4-HDA levels and increased GSH in the HI-A2A group when compared to HIvehicle. Conclusion: A2A receptor activation may contribute to neuronal injury in newborn striatum after HI in association with decreased Na+, K+-ATPase activity and increased oxidative stress.


1985 ◽  
Vol 260 (25) ◽  
pp. 13595-13600 ◽  
Author(s):  
K Morgan ◽  
M D Lewis ◽  
G Spurlock ◽  
P A Collins ◽  
S M Foord ◽  
...  

1997 ◽  
Vol 83 (4) ◽  
pp. 1062-1067 ◽  
Author(s):  
Roland H. H. Van Balkom ◽  
Wen-Zhi Zhan ◽  
Y. S. Prakash ◽  
P. N. Richard Dekhuijzen ◽  
Gary C. Sieck

Van Balkom, Roland H. H., Wen-Zhi Zhan, Y. S. Prakash, P. N. Richard Dekhuijzen, and Gary C. Sieck. Corticosteroid effects on isotonic contractile properties of rat diaphragm muscle. J. Appl. Physiol. 83(4): 1062–1067, 1997.—The effects of corticosteroids (CS) on diaphragm muscle (Diam) fiber morphology and contractile properties were evaluated in three groups of rats: controls (Ctl), surgical sham and weight-matched controls (Sham), and CS-treated (6 mg ⋅ kg−1 ⋅ day−1prednisolone at 2.5 ml/h for 3 wk). In the CS-treated Diam, there was a selective atrophy of type IIx and IIb fibers, compared with a generalized atrophy of all fibers in the Sham group. Maximum isometric force was reduced by 20% in the CS group compared with both Ctl and Sham. Maximum shortening velocity in the CS Diamwas slowed by ∼20% compared with Ctl and Sham. Peak power output of the CS Diam was only 60% of Ctl and 70% of Sham. Endurance to repeated isotonic contractions improved in the CS-treated Diam compared with Ctl. We conclude that the atrophy of type IIx and IIb fibers in the Diam can only partially account for the CS-induced changes in isotonic contractile properties. Other factors such as reduced myofibrillar density or altered cross-bridge cycling kinetics are also likely to contribute to the effects of CS treatment.


1993 ◽  
Vol 74 (5) ◽  
pp. 2450-2455 ◽  
Author(s):  
L. E. Gosselin ◽  
D. A. Martinez ◽  
A. C. Vailas ◽  
G. C. Sieck

The effect of growth on the relative interstitial space [%total cross-sectional area (CSA)] and collagen content of the rat diaphragm muscle was examined at postnatal ages of 0, 7, 14, and 21 days as well as in adult males. The proportion of interstitial space relative to total muscle CSA was determined by computerized image analysis of lectin-stained cross sections of diaphragm muscle. To assess collagen content and extent of collagen maturation (i.e., cross-linking), high-pressure liquid chromatography analysis was used to measure hydroxyproline concentration and the nonreducible collagen cross-link hydroxylysylpyridinoline (HP), respectively. At birth, interstitial space accounted for approximately 47% of total diaphragm muscle CSA. During postnatal growth, the relative contribution of interstitial space decreased such that by adulthood the interstitial space accounted for approximately 18% of total muscle CSA. The change in relative interstitial space occurred without a concomitant change in hydroxyproline concentration. However, the concentration of HP markedly increased with age such that the adult diaphragm contained approximately 17 times more HP than at birth. These results indicate that during development the relative CSA occupied by interstitial space decreases as muscle fiber size increases. However, the reduction in relative interstitial space is not associated with a change in collagen concentration. Thus collagen density in the interstitial space may increase with age. It is possible that the observed changes in relative interstitial space and collagen influence the passive length-force properties of the diaphragm.


Sign in / Sign up

Export Citation Format

Share Document