Reply to: Noxious cold stimulation: pro–con perspectives on the hypothermic effect on experimentally evoked cough

2021 ◽  
Vol 57 (3) ◽  
pp. 2100245
Author(s):  
Imran Satia ◽  
Emma Iovoli ◽  
Kimberley Holt ◽  
Ashley A. Woodcock ◽  
John Belcher ◽  
...  
2021 ◽  
Vol 57 (3) ◽  
pp. 2004063
Author(s):  
Shuxin Zhong ◽  
Liman Fang ◽  
Zhe Chen ◽  
Chen Zhan ◽  
S. Dushinka de Silva ◽  
...  

1991 ◽  
Vol 7 (1) ◽  
pp. 50
Author(s):  
M. N. Janal ◽  
W. C. Clark ◽  
J. P. Kuhl ◽  
M. Glusman

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Morten Lundh ◽  
Ali Altıntaş ◽  
Marco Tozzi ◽  
Odile Fabre ◽  
Tao Ma ◽  
...  

AbstractThe profound energy-expending nature of brown adipose tissue (BAT) thermogenesis makes it an attractive target tissue to combat obesity-associated metabolic disorders. While cold exposure is the strongest inducer of BAT activity, the temporal mechanisms tuning BAT adaptation during this activation process are incompletely understood. Here we show that the scaffold protein Afadin is dynamically regulated by cold in BAT, and participates in cold acclimation. Cold exposure acutely increases Afadin protein levels and its phosphorylation in BAT. Knockdown of Afadin in brown pre-adipocytes does not alter adipogenesis but restricts β3-adrenegic induction of thermogenic genes expression and HSL phosphorylation in mature brown adipocytes. Consistent with a defect in thermogenesis, an impaired cold tolerance was observed in fat-specific Afadin knockout mice. However, while Afadin depletion led to reduced Ucp1 mRNA induction by cold, stimulation of Ucp1 protein was conserved. Transcriptomic analysis revealed that fat-specific ablation of Afadin led to decreased functional enrichment of gene sets controlling essential metabolic functions at thermoneutrality in BAT, whereas it led to an altered reprogramming in response to cold, with enhanced enrichment of different pathways related to metabolism and remodeling. Collectively, we demonstrate a role for Afadin in supporting the adrenergic response in brown adipocytes and BAT function.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4811
Author(s):  
Siavash Doshvarpassand ◽  
Xiangyu Wang

Utilising cooling stimulation as a thermal excitation means has demonstrated profound capabilities of detecting sub-surface metal loss using thermography. Previously, a prototype mechanism was introduced which accommodates a thermal camera and cooling source and operates in a reciprocating motion scanning the test piece while cold stimulation is in operation. Immediately after that, the camera registers the thermal evolution. However, thermal reflections, non-uniform stimulation and lateral heat diffusions will remain as undesirable phenomena preventing the effective observation of sub-surface defects. This becomes more challenging when there is no prior knowledge of the non-defective area in order to effectively distinguish between defective and non-defective areas. In this work, the previously automated acquisition and processing pipeline is re-designed and optimised for two purposes: 1—Through the previous work, the mentioned pipeline was used to analyse a specific area of the test piece surface in order to reconstruct the reference area and identify defects. In order to expand the application of this device over the entire test area, regardless of its extension, the pipeline is improved in which the final surface image is reconstructed by taking into account multiple segments of the test surface. The previously introduced pre-processing method of Dynamic Reference Reconstruction (DRR) is enhanced by using a more rigorous thresholding procedure. Principal Component Analysis (PCA) is then used in order for feature (DRR images) reduction. 2—The results of PCA on multiple segment images of the test surface revealed different ranges of intensities across each segment image. This potentially could cause mistaken interpretation of the defective and non-defective areas. An automated segmentation method based on Gaussian Mixture Model (GMM) is used to assist the expert user in more effective detection of the defective areas when the non-defective areas are uniformly characterised as background. The final results of GMM have shown not only the capability of accurately detecting subsurface metal loss as low as 37.5% but also the successful detection of defects that were either unidentifiable or invisible in either the original thermal images or their PCA transformed results.


2005 ◽  
Vol 1 ◽  
pp. 1744-8069-1-16 ◽  
Author(s):  
David D McKemy

Recognition of temperature is a critical element of sensory perception and allows us to evaluate both our external and internal environments. In vertebrates, the somatosensory system can discriminate discrete changes in ambient temperature, which activate nerve endings of primary afferent fibers. These thermosensitive nerves can be further segregated into those that detect either innocuous or noxious (painful) temperatures; the latter neurons being nociceptors. We now know that thermosensitive afferents express ion channels of the transient receptor potential (TRP) family that respond at distinct temperature thresholds, thus establishing the molecular basis for thermosensation. Much is known of those channels mediating the perception of noxious heat; however, those proposed to be involved in cool to noxious cold sensation, TRPM8 and TRPA1, have only recently been described. The former channel is a receptor for menthol, and links the sensations provided by this and other cooling compounds to temperature perception. While TRPM8 almost certainly performs a critical role in cold signaling, its part in nociception is still at issue. The latter channel, TRPA1, is activated by the pungent ingredients in mustard and cinnamon, but has also been postulated to mediate our perception of noxious cold temperatures. However, a number of conflicting reports have suggested that the role of this channel in cold sensation needs to be confirmed. Thus, the molecular logic for the perception of cold-evoked pain remains enigmatic. This review is intended to summarize our current understanding of these cold thermoreceptors, as well as address the current controversy regarding TRPA1 and cold signaling.


Toxicon ◽  
1977 ◽  
Vol 15 (1) ◽  
pp. 75-80 ◽  
Author(s):  
O.H. Osman ◽  
A.O.A. Elkhawad ◽  
M. Ismail
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document