scholarly journals Long-term exposure to low-level air pollution and incidence of asthma: the ELAPSE project

2021 ◽  
Vol 57 (6) ◽  
pp. 2003099 ◽  
Author(s):  
Shuo Liu ◽  
Jeanette Therming Jørgensen ◽  
Petter Ljungman ◽  
Göran Pershagen ◽  
Tom Bellander ◽  
...  

BackgroundLong-term exposure to ambient air pollution has been linked to childhood-onset asthma, although evidence is still insufficient. Within the multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we examined the associations of long-term exposures to particulate matter with a diameter <2.5 µm (PM2.5), nitrogen dioxide (NO2) and black carbon (BC) with asthma incidence in adults.MethodsWe pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land-use regression models at participants’ baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders.ResultsOf 98 326 participants, 1965 developed asthma during a mean follow-up of 16.6 years. We observed associations in fully adjusted models with hazard ratios of 1.22 (95% CI 1.04–1.43) per 5 μg·m−3 for PM2.5, 1.17 (95% CI 1.10–1.25) per 10 µg·m−3 for NO2 and 1.15 (95% CI 1.08–1.23) per 0.5×10−5 m−1 for BC. Hazard ratios were larger in cohort subsets with exposure levels below the European Union and US limit values and possibly World Health Organization guidelines for PM2.5 and NO2. NO2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration–response curves showed no evidence of a threshold.ConclusionsLong-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.

2020 ◽  
pp. 2003099
Author(s):  
Shuo Liu ◽  
Jeanette Therming Jørgensen ◽  
Petter Ljungman ◽  
Göran Pershagen ◽  
Tom Bellander ◽  
...  

BackgroundLong-term exposure to ambient air pollution has been linked to childhood-onset asthma, while evidence is still insufficient. Within the multicentre project “Effects of Low-Level Air Pollution: A Study in Europe” (ELAPSE), we examined the associations of long-term exposures to particulate matter with diameter<2.5 µm (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) with asthma incidence in adults.MethodsWe pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land use regression models at participants’ baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders.ResultsOf 98 326 participants, 1965 developed asthma during a 16.6 years mean follow-up. We observed associations in fully adjusted models with hazard ratios and 95% confidence intervals of 1.22 (1.04−1.43) per 5 μg·m−3 for PM2.5, 1.17 (1.10−1.25) per 10 µg·m−3 for NO2, and 1.15 (1.08−1.23) per 0.5 10−5 m−1 for BC. Hazard ratios were larger in cohort subsets with exposure levels below the EU and US limit values and possibly WHO guidelines for PM2.5 and NO2. NO2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration response curves showed no evidence of a threshold.ConclusionsLong-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.


2021 ◽  
Vol 152 ◽  
pp. 106464 ◽  
Author(s):  
Shuo Liu ◽  
Youn-Hee Lim ◽  
Marie Pedersen ◽  
Jeanette T. Jørgensen ◽  
Heresh Amini ◽  
...  

Author(s):  
José Texcalac-Sangrador ◽  
Magali Hurtado-Díaz ◽  
Eunice Félix-Arellano ◽  
Carlos Guerrero-López ◽  
Horacio Riojas-Rodríguez

Health effects related to exposure to air pollution such as ozone (O3) have been documented. The World Health Organization has recommended the use of the Sum of O3 Means Over 35 ppb (SOMO35) to perform Health Impact Assessments (HIA) for long-term exposure to O3. We estimated the avoidable mortality associated with long-term exposure to tropospheric O3 in 14 cities in Mexico using information for 2015. The economic valuation of avoidable deaths related to SOMO35 exposure was performed using the willingness to pay (WTP) and human capital (HC) approaches. We estimated that 627 deaths (95% uncertainty interval (UI): 227–1051) from respiratory diseases associated with the exposure to O3 would have been avoided in people over 30 years in the study area, which confirms the public health impacts of ambient air pollution. The avoidable deaths account for almost 1400 million USD under the WTP approach, whilst the HC method yielded a lost productivity estimate of 29.7 million USD due to premature deaths. Our findings represent the first evidence of the health impacts of O3 exposure in Mexico, using SOMO35 metrics.


2021 ◽  
Vol 146 ◽  
pp. 106249 ◽  
Author(s):  
Ulla Arthur Hvidtfeldt ◽  
Gianluca Severi ◽  
Zorana Jovanovic Andersen ◽  
Richard Atkinson ◽  
Mariska Bauwelinck ◽  
...  

2021 ◽  
Vol 5 (9) ◽  
pp. e620-e632
Author(s):  
Kathrin Wolf ◽  
Barbara Hoffmann ◽  
Zorana J Andersen ◽  
Richard W Atkinson ◽  
Mariska Bauwelinck ◽  
...  

2021 ◽  
Author(s):  
Ahmet Cihat Kahraman ◽  
Nüket Sivri

Abstract In the present study, the air pollution dynamics of the metropolitan cities of Balıkesir, Bursa, İstanbul, Kocaeli, Sakarya and Tekirdağ in the Marmara Region, which is the geographical region with the highest urban and industrial activity in Turkey, were examined for the time period between 2016 and 2019. Annual changes in the cities in terms of air pollution, which was examined with a focus on the PM2.5 parameter as indicated by United Nations (UN) Sustainable Development Goals (SDGs), differences in the cities by years, and the seasonal changes in air pollution in the cities were investigated. Additionally, mortality rates attributed to air pollution were calculated with the AirQ+ software based on integrated exposure-response function recommended by the World Health Organization (WHO) and the UN using city-scale statistics of fatal disease cases that can be attributed to air pollution. It was determined that all cities in the Marmara Region study area exceeded the limit PM2,5 values specified by the European Union (EU) in the years 2016, 2017 and 2018 while only Kocaeli and Tekirdağ were below the limit values in 2019. The limit values specified by the WHO were exceeded in all cities in each year. A total of 46.920 premature deaths attributed to the exceedance of WHO limit values were calculated for the years 2016, 2017, 2018 and 2019 with 11.895, 13.853, 11.748 and 9.429, respectively.Determining national limit values for the PM2.5 parameter, which is among the most important factors of air pollution, and monitoring it in a sustainable manner using a sufficient number of well-equipped stations is of great importance. This way, national, regional and urban action plans regarding the impact of air pollution on human health, as indicated by UN SDGs, can be prepared.


Author(s):  
Mona Elbarbary ◽  
Artem Oganesyan ◽  
Trenton Honda ◽  
Geoffrey Morgan ◽  
Yuming Guo ◽  
...  

There is an established association between air pollution and cardiovascular disease (CVD), which is likely to be mediated by systemic inflammation. The present study evaluated links between long-term exposure to ambient air pollution and high-sensitivity C reactive protein (hs-CRP) in an older Chinese adult cohort (n = 7915) enrolled in the World Health Organization (WHO) study on global aging and adult health (SAGE) China Wave 1 in 2008–2010. Multilevel linear and logistic regression models were used to assess the associations of particulate matter (PM) and nitrogen dioxide (NO2) on log-transformed hs-CRP levels and odds ratios of CVD risk derived from CRP levels adjusted for confounders. A satellite-based spatial statistical model was applied to estimate the average community exposure to outdoor air pollutants (PM with an aerodynamic diameter of 10 μm or less (PM10), 2.5 μm or less (PM2.5), and 1 μm or less (PM1) and NO2) for each participant of the study. hs-CRP levels were drawn from dried blood spots of each participant. Each 10 μg/m3 increment in PM10, PM2.5, PM1, and NO2 was associated with 12.8% (95% confidence interval; (CI): 9.1, 16.6), 15.7% (95% CI: 10.9, 20.8), 10.2% (95% CI: 7.3, 13.2), and 11.8% (95% CI: 7.9, 15.8) higher serum levels of hs-CRP, respectively. Our findings suggest that air pollution may be an important factor in increasing systemic inflammation in older Chinese adults.


Sign in / Sign up

Export Citation Format

Share Document