scholarly journals A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model

2008 ◽  
Vol 9 (1) ◽  
Author(s):  
Richard Judson ◽  
Fathi Elloumi ◽  
R Woodrow Setzer ◽  
Zhen Li ◽  
Imran Shah
2018 ◽  
Vol 7 (2.28) ◽  
pp. 306
Author(s):  
Manu Kohli

For business enterprises, supplier evaluation is a mission critical process. On ERP (Enterprise Resource Planning) applications such as SAP, the supplier evaluation process is performed by configuring a linear score model, however this approach has a limited success. Therefore, author in this paper has proposed a two-stage supplier evaluation model by integrating data from SAP application and ML algorithms. In the first stage, author has applied data extraction algorithm on SAP application to build a data model comprising of relevant features. In the second stage, each instance in the data model is classified, on a rank of 1 to 6, based on the supplier performance measurements such as on-time, on quality and as promised quantity features. Thereafter, author has applied various machine learning algorithms on training sample with multi-classification objective to allow algorithm to learn supplier ranking classification. Encouraging test results were observed when learning algorithms,(DT) and Support Vector Machine (SVM), were tested with more than 98 percent accuracy on test data sets. The application of supplier evaluation model proposed in the paper can therefore be generalised to any other other information management system, not only limited to SAP, that manages Procure to Pay process.  


BMC Materials ◽  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Emre Topal ◽  
Zhongquan Liao ◽  
Markus Löffler ◽  
Jürgen Gluch ◽  
Jian Zhang ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258178
Author(s):  
Sam Tilsen ◽  
Seung-Eun Kim ◽  
Claire Wang

Measurements of the physical outputs of speech—vocal tract geometry and acoustic energy—are high-dimensional, but linguistic theories posit a low-dimensional set of categories such as phonemes and phrase types. How can it be determined when and where in high-dimensional articulatory and acoustic signals there is information related to theoretical categories? For a variety of reasons, it is problematic to directly quantify mutual information between hypothesized categories and signals. To address this issue, a multi-scale analysis method is proposed for localizing category-related information in an ensemble of speech signals using machine learning algorithms. By analyzing how classification accuracy on unseen data varies as the temporal extent of training input is systematically restricted, inferences can be drawn regarding the temporal distribution of category-related information. The method can also be used to investigate redundancy between subsets of signal dimensions. Two types of theoretical categories are examined in this paper: phonemic/gestural categories and syntactic relative clause categories. Moreover, two different machine learning algorithms were examined: linear discriminant analysis and neural networks with long short-term memory units. Both algorithms detected category-related information earlier and later in signals than would be expected given standard theoretical assumptions about when linguistic categories should influence speech. The neural network algorithm was able to identify category-related information to a greater extent than the discriminant analyses.


CONVERTER ◽  
2021 ◽  
pp. 696-706
Author(s):  
Huichao Mi

Under the influence of COVID-19, minor enterprises, especially the manufacturing industry, are facing greater financial pressure and the possibility of non-performing loans is increasing. It is very important for financial institutions to reduce financial risks while providing financial support for minor enterprises to promote industrial development and economic recovery. In order to understand the function of machine learning algorithms in predicting enterprise credit risk, the research designs five models, including Logistic Regression, Decision Tree, Naïve Bayesian, Support Vector Machine and Deep Neural Network, and adopts SMOTE and Undersampling to process imbalanced data. Experiments show that machine learning algorithms have high accuracy for both large-scale data and small-scale data.


2020 ◽  
Vol 97 (7) ◽  
pp. 639-649
Author(s):  
Tobias Arlt ◽  
Michael Liebert ◽  
Melanie Paulisch ◽  
Ildiko Lüdeking ◽  
Christian Bergbreiter ◽  
...  

2020 ◽  
Vol 39 (5) ◽  
pp. 6579-6590
Author(s):  
Sandy Çağlıyor ◽  
Başar Öztayşi ◽  
Selime Sezgin

The motion picture industry is one of the largest industries worldwide and has significant importance in the global economy. Considering the high stakes and high risks in the industry, forecast models and decision support systems are gaining importance. Several attempts have been made to estimate the theatrical performance of a movie before or at the early stages of its release. Nevertheless, these models are mostly used for predicting domestic performances and the industry still struggles to predict box office performances in overseas markets. In this study, the aim is to design a forecast model using different machine learning algorithms to estimate the theatrical success of US movies in Turkey. From various sources, a dataset of 1559 movies is constructed. Firstly, independent variables are grouped as pre-release, distributor type, and international distribution based on their characteristic. The number of attendances is discretized into three classes. Four popular machine learning algorithms, artificial neural networks, decision tree regression and gradient boosting tree and random forest are employed, and the impact of each group is observed by compared by the performance models. Then the number of target classes is increased into five and eight and results are compared with the previously developed models in the literature.


2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Lin Lin ◽  
Xiufang Liang

The online English teaching system has certain requirements for the intelligent scoring system, and the most difficult stage of intelligent scoring in the English test is to score the English composition through the intelligent model. In order to improve the intelligence of English composition scoring, based on machine learning algorithms, this study combines intelligent image recognition technology to improve machine learning algorithms, and proposes an improved MSER-based character candidate region extraction algorithm and a convolutional neural network-based pseudo-character region filtering algorithm. In addition, in order to verify whether the algorithm model proposed in this paper meets the requirements of the group text, that is, to verify the feasibility of the algorithm, the performance of the model proposed in this study is analyzed through design experiments. Moreover, the basic conditions for composition scoring are input into the model as a constraint model. The research results show that the algorithm proposed in this paper has a certain practical effect, and it can be applied to the English assessment system and the online assessment system of the homework evaluation system algorithm system.


2019 ◽  
Vol 1 (2) ◽  
pp. 78-80
Author(s):  
Eric Holloway

Detecting some patterns is a simple task for humans, but nearly impossible for current machine learning algorithms.  Here, the "checkerboard" pattern is examined, where human prediction nears 100% and machine prediction drops significantly below 50%.


Sign in / Sign up

Export Citation Format

Share Document